Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import csv
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def normalize8(I):
|
| 8 |
+
mn = I.min()
|
| 9 |
+
mx = I.max()
|
| 10 |
+
mx -= mn
|
| 11 |
+
I = ((I - mn) / mx) * 255
|
| 12 |
+
return I.astype(np.uint8)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def overlay_transparent(background, overlay, x, y):
|
| 16 |
+
|
| 17 |
+
background_width = background.shape[1]
|
| 18 |
+
background_height = background.shape[0]
|
| 19 |
+
|
| 20 |
+
if x >= background_width or y >= background_height:
|
| 21 |
+
return background
|
| 22 |
+
|
| 23 |
+
h, w = overlay.shape[0], overlay.shape[1]
|
| 24 |
+
|
| 25 |
+
if x + w > background_width:
|
| 26 |
+
w = background_width - x
|
| 27 |
+
overlay = overlay[:, :w]
|
| 28 |
+
|
| 29 |
+
if y + h > background_height:
|
| 30 |
+
h = background_height - y
|
| 31 |
+
overlay = overlay[:h]
|
| 32 |
+
|
| 33 |
+
if overlay.shape[2] < 4:
|
| 34 |
+
overlay = np.concatenate(
|
| 35 |
+
[
|
| 36 |
+
overlay,
|
| 37 |
+
np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype)
|
| 38 |
+
* 255,
|
| 39 |
+
],
|
| 40 |
+
axis=2,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
overlay_image = overlay[..., :3]
|
| 44 |
+
mask = overlay[..., 3:] / 255.0
|
| 45 |
+
|
| 46 |
+
background[y : y + h, x : x + w] = (1.0 - mask) * background[
|
| 47 |
+
y : y + h, x : x + w
|
| 48 |
+
] + mask * overlay_image
|
| 49 |
+
|
| 50 |
+
return background
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def get_mask_points(mask_name):
|
| 54 |
+
if mask_name == "Front Man Mask":
|
| 55 |
+
mask_path = "./assets/front_man_mask.png"
|
| 56 |
+
csv_path = "./assets/front_man_mask.csv"
|
| 57 |
+
elif mask_name == "Guards Mask":
|
| 58 |
+
mask_path = "./assets/guards_mask.png"
|
| 59 |
+
csv_path = "./assets/guards_mask.csv"
|
| 60 |
+
elif mask_name == "Red Mask":
|
| 61 |
+
mask_path = "./assets/redmask.png"
|
| 62 |
+
csv_path = "./assets/red_mask.csv"
|
| 63 |
+
elif mask_name == "Blue Mask":
|
| 64 |
+
mask_path = "./assets/bluemask.png"
|
| 65 |
+
csv_path = "./assets/blue_mask.csv"
|
| 66 |
+
else:
|
| 67 |
+
raise ValueError(f"❌ Unknown mask name: {mask_name}")
|
| 68 |
+
|
| 69 |
+
mask_img = cv2.imread(mask_path, cv2.IMREAD_UNCHANGED)
|
| 70 |
+
if mask_img is None:
|
| 71 |
+
raise FileNotFoundError(f"❌ Could not load mask image: {mask_path}")
|
| 72 |
+
|
| 73 |
+
mask_img = mask_img.astype(np.float32) / 255.0
|
| 74 |
+
|
| 75 |
+
mask_points = {}
|
| 76 |
+
with open(csv_path) as csv_file:
|
| 77 |
+
csv_reader = csv.reader(csv_file, delimiter=",")
|
| 78 |
+
for i, row in enumerate(csv_reader):
|
| 79 |
+
mask_points[int(row[0])] = [float(row[1]), float(row[2])]
|
| 80 |
+
|
| 81 |
+
return mask_points, mask_img
|
| 82 |
+
|
| 83 |
+
def mask_overlay(image, faces, mask_up, mask_down, mask_name):
|
| 84 |
+
mask_points, mask_img = get_mask_points(mask_name)
|
| 85 |
+
mirror_point = {
|
| 86 |
+
234: 1,
|
| 87 |
+
93: 2,
|
| 88 |
+
132: 3,
|
| 89 |
+
58: 4,
|
| 90 |
+
172: 5,
|
| 91 |
+
136: 6,
|
| 92 |
+
150: 7,
|
| 93 |
+
149: 8,
|
| 94 |
+
176: 9,
|
| 95 |
+
148: 10,
|
| 96 |
+
152: 11,
|
| 97 |
+
377: 12,
|
| 98 |
+
400: 13,
|
| 99 |
+
378: 14,
|
| 100 |
+
379: 15,
|
| 101 |
+
365: 16,
|
| 102 |
+
397: 17,
|
| 103 |
+
288: 18,
|
| 104 |
+
361: 19,
|
| 105 |
+
323: 20,
|
| 106 |
+
454: 21,
|
| 107 |
+
356: 22,
|
| 108 |
+
389: 23,
|
| 109 |
+
251: 24,
|
| 110 |
+
284: 25,
|
| 111 |
+
332: 26,
|
| 112 |
+
297: 27,
|
| 113 |
+
338: 28,
|
| 114 |
+
10: 29,
|
| 115 |
+
109: 30,
|
| 116 |
+
67: 31,
|
| 117 |
+
103: 32,
|
| 118 |
+
54: 33,
|
| 119 |
+
21: 34,
|
| 120 |
+
162: 35,
|
| 121 |
+
127: 36,
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
mask_points = mask_points
|
| 125 |
+
src_pts = []
|
| 126 |
+
for i in sorted(mask_points.keys()):
|
| 127 |
+
try:
|
| 128 |
+
src_pts.append(np.array(mask_points[i]))
|
| 129 |
+
except ValueError:
|
| 130 |
+
continue
|
| 131 |
+
src_pts = np.array(src_pts, dtype="float32")
|
| 132 |
+
extend_y = [
|
| 133 |
+
1,
|
| 134 |
+
2,
|
| 135 |
+
3,
|
| 136 |
+
4,
|
| 137 |
+
5,
|
| 138 |
+
6,
|
| 139 |
+
7,
|
| 140 |
+
8,
|
| 141 |
+
9,
|
| 142 |
+
10,
|
| 143 |
+
11,
|
| 144 |
+
12,
|
| 145 |
+
13,
|
| 146 |
+
14,
|
| 147 |
+
15,
|
| 148 |
+
16,
|
| 149 |
+
17,
|
| 150 |
+
18,
|
| 151 |
+
19,
|
| 152 |
+
20,
|
| 153 |
+
21,
|
| 154 |
+
]
|
| 155 |
+
minimize_y = [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]
|
| 156 |
+
face_points = {}
|
| 157 |
+
for i in faces[0]:
|
| 158 |
+
for j in mirror_point.keys():
|
| 159 |
+
if i[0] == j:
|
| 160 |
+
if mirror_point[i[0]] in minimize_y:
|
| 161 |
+
face_points[mirror_point[j]] = [
|
| 162 |
+
float(i[1]),
|
| 163 |
+
float(i[2] - int(mask_up)),
|
| 164 |
+
]
|
| 165 |
+
else:
|
| 166 |
+
if mirror_point[i[0]] in extend_y:
|
| 167 |
+
face_points[mirror_point[j]] = [
|
| 168 |
+
float(i[1]),
|
| 169 |
+
float(i[2] + int(mask_down)),
|
| 170 |
+
]
|
| 171 |
+
else:
|
| 172 |
+
face_points[mirror_point[j]] = [float(i[1]), float(i[2])]
|
| 173 |
+
dst_pts = []
|
| 174 |
+
for i in sorted(face_points.keys()):
|
| 175 |
+
try:
|
| 176 |
+
dst_pts.append(np.array(face_points[i]))
|
| 177 |
+
except ValueError:
|
| 178 |
+
continue
|
| 179 |
+
dst_pts = np.array(dst_pts, dtype="float32")
|
| 180 |
+
M, _ = cv2.findHomography(src_pts, dst_pts)
|
| 181 |
+
transformed_mask = cv2.warpPerspective(
|
| 182 |
+
mask_img,
|
| 183 |
+
M,
|
| 184 |
+
(image.shape[1], image.shape[0]),
|
| 185 |
+
None,
|
| 186 |
+
cv2.INTER_LINEAR,
|
| 187 |
+
cv2.BORDER_CONSTANT,
|
| 188 |
+
borderValue=[0, 0, 0, 0],
|
| 189 |
+
)
|
| 190 |
+
png_image = normalize8(transformed_mask)
|
| 191 |
+
new_image = overlay_transparent(image, png_image, 0, 0)
|
| 192 |
+
# cv2.imwrite("output.png", new_image)
|
| 193 |
+
return new_image
|