Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import time
|
| 3 |
+
from matplotlib import text
|
| 4 |
+
import mediapipe as mp
|
| 5 |
+
from mediapipe.tasks.python import vision
|
| 6 |
+
import numpy as np
|
| 7 |
+
from mediapipe import solutions
|
| 8 |
+
from mediapipe.framework.formats import landmark_pb2
|
| 9 |
+
from utils import mask_overlay
|
| 10 |
+
|
| 11 |
+
def draw_landmarks_on_image(rgb_image, detection_result):
|
| 12 |
+
face_landmarks_list = detection_result.face_landmarks
|
| 13 |
+
annotated_image = np.copy(rgb_image)
|
| 14 |
+
|
| 15 |
+
# Loop through the detected faces to visualize.
|
| 16 |
+
for idx in range(len(face_landmarks_list)):
|
| 17 |
+
face_landmarks = face_landmarks_list[idx]
|
| 18 |
+
face_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
|
| 19 |
+
face_landmarks_proto.landmark.extend(
|
| 20 |
+
[landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks]
|
| 21 |
+
)
|
| 22 |
+
solutions.drawing_utils.draw_landmarks(
|
| 23 |
+
image=annotated_image,
|
| 24 |
+
landmark_list=face_landmarks_proto,
|
| 25 |
+
connections=mp.solutions.face_mesh.FACEMESH_TESSELATION,
|
| 26 |
+
landmark_drawing_spec=None,
|
| 27 |
+
connection_drawing_spec=mp.solutions.drawing_styles.get_default_face_mesh_tesselation_style()
|
| 28 |
+
)
|
| 29 |
+
solutions.drawing_utils.draw_landmarks(
|
| 30 |
+
image=annotated_image,
|
| 31 |
+
landmark_list=face_landmarks_proto,
|
| 32 |
+
connections=mp.solutions.face_mesh.FACEMESH_CONTOURS,
|
| 33 |
+
landmark_drawing_spec=None,
|
| 34 |
+
connection_drawing_spec=mp.solutions.drawing_styles.get_default_face_mesh_contours_style()
|
| 35 |
+
)
|
| 36 |
+
solutions.drawing_utils.draw_landmarks(
|
| 37 |
+
image=annotated_image,
|
| 38 |
+
landmark_list=face_landmarks_proto,
|
| 39 |
+
connections=mp.solutions.face_mesh.FACEMESH_IRISES,
|
| 40 |
+
landmark_drawing_spec=None,
|
| 41 |
+
connection_drawing_spec=mp.solutions.drawing_styles.get_default_face_mesh_iris_connections_style()
|
| 42 |
+
)
|
| 43 |
+
return annotated_image
|
| 44 |
+
|
| 45 |
+
def mediapipe_config():
|
| 46 |
+
model_path = "face_landmarker.task"
|
| 47 |
+
BaseOptions = mp.tasks.BaseOptions
|
| 48 |
+
FaceLandmarker = mp.tasks.vision.FaceLandmarker
|
| 49 |
+
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
|
| 50 |
+
VisionRunningMode = mp.tasks.vision.RunningMode
|
| 51 |
+
options = FaceLandmarkerOptions(
|
| 52 |
+
base_options=BaseOptions(model_asset_path=model_path),
|
| 53 |
+
running_mode=VisionRunningMode.VIDEO,
|
| 54 |
+
)
|
| 55 |
+
landmarker = FaceLandmarker.create_from_options(options)
|
| 56 |
+
return landmarker
|
| 57 |
+
|
| 58 |
+
landmarker = mediapipe_config()
|
| 59 |
+
|
| 60 |
+
def face_point(results, frame):
|
| 61 |
+
ih, iw, ic = frame.shape
|
| 62 |
+
faces = []
|
| 63 |
+
if results.face_landmarks:
|
| 64 |
+
for face_landmarks in results.face_landmarks:
|
| 65 |
+
face = []
|
| 66 |
+
for id, lm in enumerate(face_landmarks):
|
| 67 |
+
x, y = int(lm.x * iw), int(lm.y * ih)
|
| 68 |
+
face.append([id, x, y])
|
| 69 |
+
## FIX: Indentation was wrong. It should be inside the loop to capture all faces.
|
| 70 |
+
faces.append(face)
|
| 71 |
+
return faces
|
| 72 |
+
|
| 73 |
+
def letterbox(image, target_width, target_height):
|
| 74 |
+
"""Resize image keeping aspect ratio, pad with black to fit target size."""
|
| 75 |
+
ih, iw = image.shape[:2]
|
| 76 |
+
scale = min(target_width / iw, target_height / ih)
|
| 77 |
+
nw, nh = int(iw * scale), int(ih * scale)
|
| 78 |
+
resized = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA)
|
| 79 |
+
canvas = np.zeros((target_height, target_width, 3), dtype=np.uint8)
|
| 80 |
+
x_offset = (target_width - nw) // 2
|
| 81 |
+
y_offset = (target_height - nh) // 2
|
| 82 |
+
canvas[y_offset:y_offset+nh, x_offset:x_offset+nw] = resized
|
| 83 |
+
return canvas
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
import subprocess
|
| 88 |
+
import os
|
| 89 |
+
import shutil
|
| 90 |
+
import os, shutil, subprocess
|
| 91 |
+
|
| 92 |
+
def add_audio(input_video, mask_video, save_video="final.mp4"):
|
| 93 |
+
try:
|
| 94 |
+
os.makedirs("./temp", exist_ok=True)
|
| 95 |
+
audio_file = os.path.abspath("./temp/temp_audio.wav")
|
| 96 |
+
|
| 97 |
+
# Normalize all paths for ffmpeg (Windows safe)
|
| 98 |
+
input_video = os.path.normpath(os.path.abspath(input_video))
|
| 99 |
+
mask_video = os.path.normpath(os.path.abspath(mask_video))
|
| 100 |
+
save_video = os.path.normpath(os.path.abspath(save_video))
|
| 101 |
+
|
| 102 |
+
# Step 1: Extract WAV audio
|
| 103 |
+
extract_cmd = [
|
| 104 |
+
"ffmpeg", "-y", "-i", input_video, "-vn",
|
| 105 |
+
"-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
|
| 106 |
+
audio_file, "-hide_banner", "-loglevel", "error"
|
| 107 |
+
]
|
| 108 |
+
subprocess.run(extract_cmd, check=True)
|
| 109 |
+
|
| 110 |
+
# Validate
|
| 111 |
+
if not os.path.exists(audio_file) or os.path.getsize(audio_file) == 0:
|
| 112 |
+
raise Exception("No audio track extracted")
|
| 113 |
+
|
| 114 |
+
# Step 2: Merge WAV + video
|
| 115 |
+
merge_cmd = [
|
| 116 |
+
"ffmpeg", "-y", "-i", mask_video, "-i", audio_file,
|
| 117 |
+
"-c:v", "copy", "-c:a", "aac", "-shortest",
|
| 118 |
+
save_video, "-hide_banner", "-loglevel", "error"
|
| 119 |
+
]
|
| 120 |
+
subprocess.run(merge_cmd, check=True)
|
| 121 |
+
|
| 122 |
+
os.remove(audio_file)
|
| 123 |
+
return True
|
| 124 |
+
|
| 125 |
+
except Exception as e:
|
| 126 |
+
print("⚠️ Audio merge failed:", e)
|
| 127 |
+
try:
|
| 128 |
+
shutil.copy(mask_video, save_video) # fallback
|
| 129 |
+
except Exception as e2:
|
| 130 |
+
print("❌ Fallback copy failed:", e2)
|
| 131 |
+
return False
|
| 132 |
+
return False
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def add_mask(upload_video,
|
| 137 |
+
mask_name="Blue Mask",mask_up=10, mask_down=10):
|
| 138 |
+
output_video="./temp/mask.mp4"
|
| 139 |
+
os.makedirs("./temp", exist_ok=True)
|
| 140 |
+
cap = cv2.VideoCapture(upload_video)
|
| 141 |
+
if not cap.isOpened():
|
| 142 |
+
print("❌ Cannot access video file")
|
| 143 |
+
exit()
|
| 144 |
+
input_fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 145 |
+
if input_fps <= 0 or input_fps > 120: # sanity check
|
| 146 |
+
input_fps = 25 # default fallback
|
| 147 |
+
|
| 148 |
+
OUTPUT_WIDTH = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 149 |
+
OUTPUT_HEIGHT = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 150 |
+
|
| 151 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 152 |
+
out = cv2.VideoWriter(output_video, fourcc, input_fps, (OUTPUT_WIDTH, OUTPUT_HEIGHT))
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# For more stable FPS calculation
|
| 156 |
+
frame_count = 0
|
| 157 |
+
fps = 0
|
| 158 |
+
fps_start_time = time.time()
|
| 159 |
+
|
| 160 |
+
while True:
|
| 161 |
+
ret, frame = cap.read()
|
| 162 |
+
if not ret:
|
| 163 |
+
break
|
| 164 |
+
frame = cv2.flip(frame, 1)
|
| 165 |
+
raw_frame=frame.copy()
|
| 166 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 167 |
+
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame_rgb)
|
| 168 |
+
timestamp_ms = int(cap.get(cv2.CAP_PROP_POS_MSEC))
|
| 169 |
+
results = landmarker.detect_for_video(mp_image, timestamp_ms)
|
| 170 |
+
|
| 171 |
+
# Create the mesh visualization
|
| 172 |
+
visualized_image = draw_landmarks_on_image(frame_rgb, results)
|
| 173 |
+
visualized_image = cv2.cvtColor(visualized_image, cv2.COLOR_RGB2BGR)
|
| 174 |
+
|
| 175 |
+
# Create the mask overlay image
|
| 176 |
+
faces = face_point(results, frame)
|
| 177 |
+
if len(faces) > 0:
|
| 178 |
+
masked_frame = mask_overlay(frame, faces, mask_up, mask_down, mask_name)
|
| 179 |
+
else:
|
| 180 |
+
masked_frame = frame
|
| 181 |
+
out.write(masked_frame)
|
| 182 |
+
|
| 183 |
+
# frame_count += 1
|
| 184 |
+
# if time.time() - fps_start_time >= 1.0:
|
| 185 |
+
# fps = frame_count / (time.time() - fps_start_time)
|
| 186 |
+
# frame_count = 0
|
| 187 |
+
# fps_start_time = time.time()
|
| 188 |
+
# fps_text = f"FPS: {fps:.2f}"
|
| 189 |
+
# cv2.putText(masked_frame, fps_text, (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
| 190 |
+
# cv2.putText(visualized_image, fps_text, (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
| 191 |
+
# SCREEN_W, SCREEN_H = 480, 270
|
| 192 |
+
# left=letterbox(raw_frame, SCREEN_W, SCREEN_H)
|
| 193 |
+
# middle = letterbox(visualized_image, SCREEN_W, SCREEN_H)
|
| 194 |
+
# right = letterbox(masked_frame, SCREEN_W, SCREEN_H)
|
| 195 |
+
# combined_image = np.hstack((left,middle, right))
|
| 196 |
+
|
| 197 |
+
# cv2.imshow("Face Mesh and Mask Overlay", combined_image)
|
| 198 |
+
# if cv2.waitKey(1) & 0xFF == ord("q"):
|
| 199 |
+
# break
|
| 200 |
+
|
| 201 |
+
print("Releasing resources...")
|
| 202 |
+
cap.release()
|
| 203 |
+
out.release()
|
| 204 |
+
cv2.destroyAllWindows()
|
| 205 |
+
save_video_path="./temp/"+os.path.splitext(upload_video)[0] + "_mask.mp4"
|
| 206 |
+
sucess=add_audio(upload_video,output_video, save_video_path)
|
| 207 |
+
if sucess:
|
| 208 |
+
print(f"✅ Masked video saved to {save_video_path}")
|
| 209 |
+
return save_video_path,save_video_path
|
| 210 |
+
else:
|
| 211 |
+
print("❌ Failed to save masked video.")
|
| 212 |
+
return output_video,output_video
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
# add_mask("input.mp4", "output_video.mp4", mask_up=10, mask_down=10, mask_name="Blue Mask")
|
| 216 |
+
|
| 217 |
+
import gradio as gr
|
| 218 |
+
|
| 219 |
+
def ui():
|
| 220 |
+
with gr.Blocks() as demo:
|
| 221 |
+
gr.Markdown("## Hide Face Using Squid Game Masks")
|
| 222 |
+
mask_names=["Front Man Mask", "Guards Mask", "Red Mask", "Blue Mask"]
|
| 223 |
+
|
| 224 |
+
with gr.Row():
|
| 225 |
+
with gr.Column():
|
| 226 |
+
video_input = gr.Video(label="Upload Video")
|
| 227 |
+
mask_selector = gr.Dropdown(choices=mask_names, label="Select Mask")
|
| 228 |
+
submit_btn = gr.Button("Apply Mask")
|
| 229 |
+
|
| 230 |
+
with gr.Accordion('Mask Settings', open=False):
|
| 231 |
+
mask_up = gr.Slider(minimum=0, maximum=100, label="Mask Up", value=10)
|
| 232 |
+
mask_down = gr.Slider(minimum=0, maximum=100, label="Mask Down", value=10)
|
| 233 |
+
|
| 234 |
+
with gr.Column():
|
| 235 |
+
output_video = gr.Video(label="Output Video")
|
| 236 |
+
download_video = gr.File(label="Download Video")
|
| 237 |
+
|
| 238 |
+
inputs = [video_input, mask_selector, mask_up, mask_down]
|
| 239 |
+
outputs = [output_video, download_video]
|
| 240 |
+
|
| 241 |
+
submit_btn.click(add_mask, inputs=inputs, outputs=outputs)
|
| 242 |
+
|
| 243 |
+
return demo
|
| 244 |
+
|
| 245 |
+
demo=ui()
|
| 246 |
+
demo.launch()
|