Nech-C's picture
Update app.py
b51ea89 verified
import os, time, zipfile, io
import random
import gradio as gr
from langdetect import detect, DetectorFactory
import numpy as np
import spaces
import torch
from transformers import CLIPTokenizer
DEV_MODE = os.getenv("DEV_MODE_", "0") == "1"
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1920
MODELS = {
"v150": "John6666/wai-nsfw-illustrious-sdxl-v150-sdxl",
"v140": "Ine007/waiNSFWIllustrious_v140",
"v130": "dhead/waiNSFWIllustrious_v130",
"v120": "votepurchase/waiNSFWIllustrious_v120"
}
# LLM
LLM_PIPELINE = None
MAX_NEW_TOKENS = 80
if DEV_MODE:
from mock import MockPipe
from collections import defaultdict
pipes = defaultdict(MockPipe)
device = "cpu"
else:
from diffusers import DiffusionPipeline
device = "cuda"
pipes = {}
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
for model_name, model_repo_id in MODELS.items():
pipes[model_name] = DiffusionPipeline.from_pretrained(
model_repo_id,
torch_dtype=torch_dtype,
use_safetensors=True,
add_watermarker=None,
).to(device)
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
model_id = os.getenv("llm_repo", "")
bnb_config = BitsAndBytesConfig(
load_in_8bit=True
)
tok = AutoTokenizer.from_pretrained(model_id, token=os.getenv("HF_TOKEN", ""))
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
token=os.getenv("HF_TOKEN", "")
)
LLM_PIPELINE = pipeline("text-generation", model=model, tokenizer=tok)
DetectorFactory.seed = 0
def _apply_preset_ui(preset):
w, h = apply_preset(preset)
return int(w), int(h)
def apply_preset(preset):
mapping = {
"768×768 (square)": (768, 768),
"1024×1024": (1024, 1024),
"832×1216 (portrait)": (832, 1216),
"1152×896 (landscape)": (1152, 896),
"768×1344 (portrait, lighter)": (768, 1344),
}
return mapping.get(preset, (1024, 768))
def detect_language(text):
try:
lang = detect(text)
except Exception:
lang = "en"
return lang
def infer(
model: str,
prompt: str,
quality_prompt: str,
negative_prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
num_images: int,
history: list,
use_quality: bool,
language_warning_count,
progress=gr.Progress(track_tqdm=True),
):
# detect non-english text only first time
if language_warning_count < 1:
prompt_lang = detect_language(prompt)
if prompt_lang != "en":
language_warning_count += 1
gr.Warning(
f"If your prompt contains non-English characters ({prompt_lang}), "
f"enable translation in advanced settings."
)
# call _infer WITHOUT language_warning_count
last_fit, last_raw, base_seed, history, history_dup = _infer(
model, prompt, quality_prompt, negative_prompt, seed, randomize_seed,
width, height, guidance_scale, num_inference_steps, num_images,
history, use_quality, progress=gr.Progress(track_tqdm=True),
)
# return updated state as the last output
return last_fit, last_raw, base_seed, history, history_dup, language_warning_count
@spaces.GPU()
def _infer(
model: str,
prompt: str,
quality_prompt: str,
negative_prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
num_images: int,
history: list,
use_quality: bool,
progress=gr.Progress(track_tqdm=True),
) -> tuple:
pipe = pipes[model]
if randomize_seed:
seed = random.randint(0, MAX_SEED)
base_seed = int(seed)
full_prompt = (prompt + "," + quality_prompt) if use_quality else prompt
print(f"original: {full_prompt}")
ids = tokenizer(full_prompt)["input_ids"]
print(f"ids: {ids}\n------------------------------------")
history = history or []
last_img = None
for i in range(int(num_images)):
gen = torch.Generator(device=device).manual_seed(base_seed + i)
img = pipe(
prompt=full_prompt,
negative_prompt=negative_prompt or None,
guidance_scale=float(guidance_scale),
num_inference_steps=int(num_inference_steps),
width=int(width),
height=int(height),
generator=gen,
).images[0]
caption = f"seed={base_seed + i}, {width}x{height}, steps={num_inference_steps}, cfg={guidance_scale}, model={model}"
history.append((img, caption))
last_img = img
# send same image to both views (fit + raw), return base seed
return last_img, last_img, base_seed, history, history
def clear_history():
return [], []
def download_all(history):
if not history:
return None
ts = time.strftime("%Y%m%d_%H%M%S")
zip_path = f"/tmp/sdxl_session_{ts}.zip"
with zipfile.ZipFile(zip_path, "w", compression=zipfile.ZIP_DEFLATED) as zf:
for idx, (img, caption) in enumerate(history, start=1):
try:
seed_val = caption.split(",")[0].split("=")[1].strip()
base = f"{idx:03d}_seed{seed_val}"
except Exception:
base = f"{idx:03d}"
buf = io.BytesIO()
img.save(buf, format="PNG")
buf.seek(0)
zf.writestr(f"{base}.png", buf.read())
return zip_path
def toggle_controls(hide: bool):
return gr.update(visible=not hide)
def compute_token_count(prompt: str, quality_prompt: str, use_quality: bool):
full_prompt = (prompt + quality_prompt) if use_quality else prompt
return len(tokenizer(full_prompt)["input_ids"]) - 2
def toggle_quality_prompt(enabled: bool):
return gr.update(interactive=enabled)
examples = [
"anime girl with flowing silver hair, cherry blossoms in the background, soft lighting, detailed eyes, high resolution",
"samurai standing in a bamboo forest at night, glowing lanterns, cinematic lighting, dramatic pose",
"school rooftop at sunset, two characters looking at each other, detailed clouds, anime style",
"cyberpunk city street, neon lights, rainy atmosphere, anime illustration, high detail",
"fantasy anime landscape with floating islands and waterfalls, vibrant colors, wide shot",
]
css = """
#col-container { margin: 0 auto; max-width: 1250px; width: 100%; padding: 0 12px; }
#left-col { position: sticky; top: 12px; align-self: start; }
/* responsive image (FIT view) */
#result_fit img { max-height: 700px; width: auto; height: auto; }
/* 'Hide controls' toggle only visible on small screens */
#hide_controls_row { display: none; }
#title { text-align: center; }
@media (max-width: 768px) {
#hide_controls_row { display: block; margin-bottom: 8px; }
#left-col { position: static; } /* less sticky on small screens */
}
"""
custom_theme = gr.themes.Soft(
primary_hue="violet", # overall accent = violet
secondary_hue="fuchsia", # secondary accents
neutral_hue="slate" # neutral surfaces/text
).set(
# --- Backgrounds (gradient) ---
body_background_fill=(
),
body_background_fill_dark=(
"#0c0a24"
),
# --- Blocks / cards (semi-transparent to fit bg) ---
block_background_fill="rgba(255, 255, 255, 0.65)", # light: milky panel
block_background_fill_dark="rgba(20, 18, 40, 0.55)", # dark: inky panel
block_border_color="rgba(84, 76, 140, 0.35)", # light: violet-gray outline
block_border_color_dark="rgba(164, 148, 255, 0.18)", # dark: subtle lilac outline
block_shadow="0 12px 30px rgba(93, 87, 160, 0.25)", # light shadow
block_shadow_dark="0 16px 36px rgba(0, 0, 0, 0.45)", # dark shadow
# --- Inputs (textboxes, dropdowns, sliders) ---
input_background_fill="rgba(255, 255, 255, 0.9)", # light input bg
input_background_fill_dark="rgba(14, 12, 30, 0.65)", # dark input bg
input_border_color="rgba(107, 114, 255, 0.45)", # light border indigo
input_border_color_dark="rgba(131, 118, 255, 0.28)", # dark border lilac
input_placeholder_color="rgba(23, 19, 43, 0.45)", # light placeholder
input_placeholder_color_dark="rgba(246, 245, 255, 0.45)", # dark placeholder
# === PRIMARY BUTTONS ===
button_primary_text_color="#ffffff",
button_primary_text_color_dark="#ffffff",
button_primary_background_fill="linear-gradient(135deg, #7b5cff 0%, #c14cff 100%)", # light
button_primary_background_fill_dark="linear-gradient(135deg, #5c47d6 0%, #8a2ec9 100%)", # dark
button_primary_background_fill_hover="linear-gradient(135deg, #8b6bff 0%, #d85cff 100%)", # light hover
button_primary_background_fill_hover_dark="linear-gradient(135deg, #6a56ea 0%, #a23bdd 100%)", # dark hover
# === SECONDARY BUTTONS ===
button_secondary_text_color="#2a2550", # light
button_secondary_text_color_dark="#e8e6ff", # dark
button_secondary_background_fill="rgba(255,255,255,0.55)", # light
button_secondary_background_fill_dark="rgba(255,255,255,0.10)", # dark
button_secondary_background_fill_hover="rgba(255,255,255,0.75)",
button_secondary_background_fill_hover_dark="rgba(255,255,255,0.18)",
# --- Text colors tuned for readability on purple bg ---
body_text_color="#000000",
body_text_color_dark="#e9e8ff",
body_text_color_subdued="#000000",
body_text_color_subdued_dark="rgba(233,232,255,0.75)",
link_text_color="#000000", # violet-300-ish
link_text_color_dark="#a78bfa", # violet-400-ish
link_text_color_active="#000000", # fuchsia-200-ish
link_text_color_active_dark="#e9d5ff", # fuchsia-300-ish
# === SLIDER / CHECK / RADIO ACCENTS ===
slider_color="#7048ff", # light rail/handle
slider_color_dark="#b89cff", # dark rail/handle
checkbox_label_text_color="#1f1a39", # light label
checkbox_label_text_color_dark="#ecebff", # dark label
)
with gr.Blocks(css=css, theme=custom_theme) as demo:
history_state = gr.State([])
language_warning_count = gr.State(0)
with gr.Column(elem_id="col-container"):
gr.Markdown("# SDXL Text-to-Image (waiNSFWIllustrious_v12-v14)", elem_id="title")
with gr.Row():
# LEFT: controls
with gr.Column(scale=1, elem_id="left-col"):
with gr.Row(elem_id="hide_controls_row"):
hide_controls_cb = gr.Checkbox(label="Hide advanced controls (mobile friendly)", value=False)
with gr.Group(visible=True) as controls_group:
non_english_text = gr.Textbox(
label="Prompt to translate", placeholder="Enter text to translate", interactive=True, visible=False
)
translate_btn = gr.Button("translate", visible=False)
prompt = gr.Text(
label="Prompt",
lines=2,
max_lines=6,
placeholder="Enter your prompt",
scale=1,
min_width=0,
autofocus=True,
)
quality_prompt = gr.Text(
label="Quality prompt",
value="masterpiece, best quality, fine details"
)
with gr.Group(visible=True) as adv_controls_group:
quality_prompt_toggle = gr.Checkbox(
label="Use quality prompt",
value=True
)
generations = gr.Slider(
label="Generations",
maximum=10,
minimum=1,
step=1,
value=1,
info="Control how many images are generated sequentially.",
)
model = gr.Radio(
choices=MODELS.keys(),
value="v140",
info="choose the model you want.",
label="Model",
)
token_count = gr.Number(
label="Token count",
info="SDXL models work best when the token count is <= 77."
)
run_button = gr.Button("Run", variant="primary")
# RIGHT: image + toggle
with gr.Column(scale=2):
# two image views: FIT (responsive) and RAW (no scaling)
result_fit = gr.Image(label="Result", show_label=False, elem_id="result_fit", visible=True)
result_raw = gr.Image(label="Result (original size)", show_label=False, visible=False)
# Advanced settings
with gr.Accordion("Advanced Settings", open=False):
no_rescale_cb = gr.Checkbox(
label="Do not rescale to fit screen",
value=False,
info="Uncheck = fit preview to screen (default).",
visible=True
)
translation_cb = gr.Checkbox(
label="Enable translation",
value=False,
info="Enable translation for the prompt.",
visible=True,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="blurry, low quality, watermark, monochrome, text",
)
with gr.Row():
size_preset = gr.Dropdown(
["768×768 (square)", "1024×1024", "832×1216 (portrait)", "1152×896 (landscape)", "768×1344 (portrait, lighter)"],
value="1024×1024",
label="Size preset",
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=12.0, step=0.1, value=6)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=75, step=1, value=30)
gr.Examples(examples=examples, inputs=[prompt])
# Gallery + actions
gallery = gr.Gallery(label="History", preview=True, columns=3, height=320)
with gr.Row():
clear_btn = gr.Button("Clear history", variant="secondary")
download_btn = gr.Button("Download all")
size_preset.change(fn=_apply_preset_ui, inputs=[size_preset], outputs=[width, height])
def toggle_rescale(no_rescale: bool):
# show FIT when not checked; show RAW when checked
return gr.update(visible=not no_rescale), gr.update(visible=no_rescale)
no_rescale_cb.change(fn=toggle_rescale, inputs=[no_rescale_cb], outputs=[result_fit, result_raw])
def toggle_translate(on: bool):
return gr.update(visible=on), gr.update(visible=on)
def move_prompt_to_non_english(prompt_text: str):
return gr.update(value=prompt_text), gr.update(value="")
translation_cb.change(fn=toggle_translate, inputs=[translation_cb], outputs=[non_english_text, translate_btn])
translation_cb.change(fn=move_prompt_to_non_english, inputs=[prompt], outputs=[non_english_text, prompt])
@spaces.GPU()
def translate_text(text):
messages = [
{"role": "user", "content": f"translate the following text into English: <start>{text}<end>. return the translated text only!"},
]
translated_text = LLM_PIPELINE(messages, max_new_tokens=MAX_NEW_TOKENS, return_full_text=False)
print("--------------------translation:------------------------ \n"
f"non eng text: {text}"
f"translated: {translated_text[0]['generated_text']}")
return translated_text[0]['generated_text']
translate_btn.click(fn=translate_text, inputs=[non_english_text], outputs=[prompt])
# Mobile: hide/show controls group
hide_controls_cb.change(fn=toggle_controls, inputs=[hide_controls_cb], outputs=[adv_controls_group])
# Clear & Download
clear_btn.click(fn=clear_history, inputs=None, outputs=[gallery, history_state])
download_btn.click(fn=download_all, inputs=[history_state], outputs=[gr.File(label="images.zip")])
quality_prompt_toggle.change(
fn=toggle_quality_prompt,
inputs=[quality_prompt_toggle],
outputs=[quality_prompt]
)
prompt.change(
fn=compute_token_count,
inputs=[prompt, quality_prompt, quality_prompt_toggle],
outputs=[token_count]
)
quality_prompt.change(
fn=compute_token_count,
inputs=[prompt, quality_prompt, quality_prompt_toggle],
outputs=[token_count]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[model, prompt, quality_prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, generations, history_state, quality_prompt_toggle, language_warning_count],
outputs=[result_fit, result_raw, seed, gallery, history_state, language_warning_count],
)
if __name__ == "__main__":
demo.launch()