File size: 18,329 Bytes
33086fb
d7e235c
00c5ec1
a09631a
 
 
 
d7e235c
a09631a
 
 
d7e235c
e151523
 
 
b51ea89
33086fb
32b3e11
33086fb
 
 
 
d7e235c
a09631a
 
 
 
 
e151523
 
 
 
 
 
a09631a
e151523
 
 
 
 
 
 
 
 
 
 
 
 
 
a09631a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7e235c
33086fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a09631a
 
 
 
 
 
 
 
33086fb
a09631a
 
 
 
 
 
 
 
 
 
 
 
 
 
33086fb
 
022fa14
 
a09631a
 
 
 
022fa14
 
a09631a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33086fb
 
 
 
a09631a
 
33086fb
 
a09631a
 
33086fb
 
 
 
 
 
 
 
 
 
 
 
 
 
a09631a
33086fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a09631a
33086fb
 
 
 
 
 
 
 
 
 
 
 
89ebfc5
d7e235c
 
 
 
 
 
 
 
 
 
ce1a537
d7e235c
 
a912001
d7e235c
 
37b2623
d7e235c
 
 
 
 
 
37b2623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33086fb
37b2623
d7e235c
a09631a
d7e235c
37b2623
d7e235c
 
 
 
e151523
d7e235c
a09631a
 
 
 
 
d7e235c
 
 
 
 
 
 
 
 
89ebfc5
 
a09631a
ce1a537
e151523
a09631a
 
 
 
e151523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7e235c
e151523
d7e235c
 
 
 
 
 
 
 
89ebfc5
 
 
 
 
 
a09631a
 
 
 
 
 
89ebfc5
 
 
 
 
 
d7e235c
 
 
ce1a537
d7e235c
 
ce1a537
d7e235c
 
 
 
 
ce1a537
 
d7e235c
 
ce1a537
5a38538
d7e235c
 
 
 
 
 
 
 
 
89ebfc5
d7e235c
 
a09631a
 
 
 
d7e235c
a09631a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7e235c
 
e151523
d7e235c
 
 
 
e151523
33086fb
89ebfc5
 
 
 
 
e151523
 
 
 
 
 
 
 
 
 
 
 
33086fb
89ebfc5
 
 
a09631a
 
89ebfc5
 
b401694
164927b
d7e235c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import os, time, zipfile, io
import random

import gradio as gr
from langdetect import detect, DetectorFactory
import numpy as np
import spaces
import torch
from transformers import CLIPTokenizer



DEV_MODE = os.getenv("DEV_MODE_", "0") == "1"
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1920
MODELS = {
    "v150": "John6666/wai-nsfw-illustrious-sdxl-v150-sdxl",
    "v140": "Ine007/waiNSFWIllustrious_v140",
    "v130": "dhead/waiNSFWIllustrious_v130",
    "v120": "votepurchase/waiNSFWIllustrious_v120"
}

# LLM
LLM_PIPELINE = None

MAX_NEW_TOKENS = 80

if DEV_MODE:
    from mock import MockPipe
    from collections import defaultdict
    pipes = defaultdict(MockPipe)
    device = "cpu"
else:
    from diffusers import DiffusionPipeline
    device = "cuda"

    pipes = {}
    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    for model_name, model_repo_id in MODELS.items():
        pipes[model_name] = DiffusionPipeline.from_pretrained(
            model_repo_id,
            torch_dtype=torch_dtype,
            use_safetensors=True,
            add_watermarker=None,
        ).to(device)

    if torch.cuda.is_available():
        torch.backends.cuda.matmul.allow_tf32 = True
    from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
    model_id = os.getenv("llm_repo", "")
    bnb_config = BitsAndBytesConfig(
        load_in_8bit=True
    )
    tok = AutoTokenizer.from_pretrained(model_id, token=os.getenv("HF_TOKEN", ""))
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        quantization_config=bnb_config,
        device_map="auto",
        token=os.getenv("HF_TOKEN", "")
    )

    LLM_PIPELINE = pipeline("text-generation", model=model, tokenizer=tok)



DetectorFactory.seed = 0

def _apply_preset_ui(preset):
    w, h = apply_preset(preset)
    return int(w), int(h)

def apply_preset(preset):
    mapping = {
        "768×768 (square)": (768, 768),
        "1024×1024": (1024, 1024),
        "832×1216 (portrait)": (832, 1216),
        "1152×896 (landscape)": (1152, 896),
        "768×1344 (portrait, lighter)": (768, 1344),
    }
    return mapping.get(preset, (1024, 768))


def detect_language(text):
    try:
        lang = detect(text)
    except Exception:
        lang = "en"
    return lang


def infer(
    model: str,
    prompt: str,
    quality_prompt: str,
    negative_prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    num_images: int,
    history: list,
    use_quality: bool,
    language_warning_count,
    progress=gr.Progress(track_tqdm=True),
):
     # detect non-english text only first time
    if language_warning_count < 1:
        prompt_lang = detect_language(prompt)
        if prompt_lang != "en":
            language_warning_count += 1
            gr.Warning(
                f"If your prompt contains non-English characters ({prompt_lang}), "
                f"enable translation in advanced settings."
            )

    # call _infer WITHOUT language_warning_count
    last_fit, last_raw, base_seed, history, history_dup = _infer(
        model, prompt, quality_prompt, negative_prompt, seed, randomize_seed,
        width, height, guidance_scale, num_inference_steps, num_images,
        history, use_quality, progress=gr.Progress(track_tqdm=True),
    )

    # return updated state as the last output
    return last_fit, last_raw, base_seed, history, history_dup, language_warning_count

@spaces.GPU()
def _infer(
    model: str,
    prompt: str,
    quality_prompt: str,
    negative_prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    num_images: int,
    history: list,
    use_quality: bool,
    progress=gr.Progress(track_tqdm=True),
) -> tuple:
    pipe = pipes[model]
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    base_seed = int(seed)
    full_prompt = (prompt + "," + quality_prompt) if use_quality else prompt

    print(f"original: {full_prompt}")
    ids = tokenizer(full_prompt)["input_ids"]
    print(f"ids: {ids}\n------------------------------------")

    history = history or []
    last_img = None

    for i in range(int(num_images)):
        gen = torch.Generator(device=device).manual_seed(base_seed + i)
        img = pipe(
            prompt=full_prompt,
            negative_prompt=negative_prompt or None,
            guidance_scale=float(guidance_scale),
            num_inference_steps=int(num_inference_steps),
            width=int(width),
            height=int(height),
            generator=gen,
        ).images[0]
        caption = f"seed={base_seed + i}, {width}x{height}, steps={num_inference_steps}, cfg={guidance_scale}, model={model}"
        history.append((img, caption))
        last_img = img
    # send same image to both views (fit + raw), return base seed
    return last_img, last_img, base_seed, history, history

def clear_history():
    return [], []

def download_all(history):
    if not history:
        return None
    ts = time.strftime("%Y%m%d_%H%M%S")
    zip_path = f"/tmp/sdxl_session_{ts}.zip"
    with zipfile.ZipFile(zip_path, "w", compression=zipfile.ZIP_DEFLATED) as zf:
        for idx, (img, caption) in enumerate(history, start=1):
            try:
                seed_val = caption.split(",")[0].split("=")[1].strip()
                base = f"{idx:03d}_seed{seed_val}"
            except Exception:
                base = f"{idx:03d}"
            buf = io.BytesIO()
            img.save(buf, format="PNG")
            buf.seek(0)
            zf.writestr(f"{base}.png", buf.read())
    return zip_path



def toggle_controls(hide: bool):
    return gr.update(visible=not hide)

def compute_token_count(prompt: str, quality_prompt: str, use_quality: bool):
    full_prompt = (prompt + quality_prompt) if use_quality else prompt
    
    return len(tokenizer(full_prompt)["input_ids"]) - 2

def toggle_quality_prompt(enabled: bool):
    return gr.update(interactive=enabled)



examples = [
    "anime girl with flowing silver hair, cherry blossoms in the background, soft lighting, detailed eyes, high resolution",
    "samurai standing in a bamboo forest at night, glowing lanterns, cinematic lighting, dramatic pose",
    "school rooftop at sunset, two characters looking at each other, detailed clouds, anime style",
    "cyberpunk city street, neon lights, rainy atmosphere, anime illustration, high detail",
    "fantasy anime landscape with floating islands and waterfalls, vibrant colors, wide shot",
]

css = """
#col-container { margin: 0 auto; max-width: 1250px; width: 100%; padding: 0 12px; }
#left-col { position: sticky; top: 12px; align-self: start; }
/* responsive image (FIT view) */
#result_fit img { max-height: 700px; width: auto; height: auto; }
/* 'Hide controls' toggle only visible on small screens */
#hide_controls_row { display: none; }
#title { text-align: center; }
@media (max-width: 768px) {
  #hide_controls_row { display: block; margin-bottom: 8px; }
  #left-col { position: static; } /* less sticky on small screens */
}
"""

custom_theme = gr.themes.Soft(
    primary_hue="violet",      # overall accent = violet
    secondary_hue="fuchsia",   # secondary accents
    neutral_hue="slate"        # neutral surfaces/text
).set(
    # --- Backgrounds (gradient) ---
    body_background_fill=(
        
    ),
    body_background_fill_dark=(
        "#0c0a24"
    ),

    # --- Blocks / cards (semi-transparent to fit bg) ---
     block_background_fill="rgba(255, 255, 255, 0.65)",           # light: milky panel
    block_background_fill_dark="rgba(20, 18, 40, 0.55)",         # dark: inky panel
    block_border_color="rgba(84, 76, 140, 0.35)",                # light: violet-gray outline
    block_border_color_dark="rgba(164, 148, 255, 0.18)",         # dark: subtle lilac outline
    block_shadow="0 12px 30px rgba(93, 87, 160, 0.25)",          # light shadow
    block_shadow_dark="0 16px 36px rgba(0, 0, 0, 0.45)",         # dark shadow

    # --- Inputs (textboxes, dropdowns, sliders) ---
    input_background_fill="rgba(255, 255, 255, 0.9)",            # light input bg
    input_background_fill_dark="rgba(14, 12, 30, 0.65)",         # dark input bg
    input_border_color="rgba(107, 114, 255, 0.45)",              # light border indigo
    input_border_color_dark="rgba(131, 118, 255, 0.28)",         # dark border lilac
    input_placeholder_color="rgba(23, 19, 43, 0.45)",            # light placeholder
    input_placeholder_color_dark="rgba(246, 245, 255, 0.45)",    # dark placeholder

      # === PRIMARY BUTTONS ===
    button_primary_text_color="#ffffff",
    button_primary_text_color_dark="#ffffff",
    button_primary_background_fill="linear-gradient(135deg, #7b5cff 0%, #c14cff 100%)",        # light
    button_primary_background_fill_dark="linear-gradient(135deg, #5c47d6 0%, #8a2ec9 100%)",   # dark
    button_primary_background_fill_hover="linear-gradient(135deg, #8b6bff 0%, #d85cff 100%)",  # light hover
    button_primary_background_fill_hover_dark="linear-gradient(135deg, #6a56ea 0%, #a23bdd 100%)", # dark hover

    # === SECONDARY BUTTONS ===
    button_secondary_text_color="#2a2550",                       # light
    button_secondary_text_color_dark="#e8e6ff",                  # dark
    button_secondary_background_fill="rgba(255,255,255,0.55)",   # light
    button_secondary_background_fill_dark="rgba(255,255,255,0.10)", # dark
    button_secondary_background_fill_hover="rgba(255,255,255,0.75)",
    button_secondary_background_fill_hover_dark="rgba(255,255,255,0.18)",

    # --- Text colors tuned for readability on purple bg ---
    body_text_color="#000000",
    body_text_color_dark="#e9e8ff",
    
    body_text_color_subdued="#000000",
    body_text_color_subdued_dark="rgba(233,232,255,0.75)",
    link_text_color="#000000",  # violet-300-ish
    link_text_color_dark="#a78bfa",  # violet-400-ish
    link_text_color_active="#000000",  # fuchsia-200-ish
    link_text_color_active_dark="#e9d5ff",  # fuchsia-300-ish
    

      # === SLIDER / CHECK / RADIO ACCENTS ===
    slider_color="#7048ff",               # light rail/handle
    slider_color_dark="#b89cff",          # dark rail/handle
    checkbox_label_text_color="#1f1a39",  # light label
    checkbox_label_text_color_dark="#ecebff",  # dark label
)

with gr.Blocks(css=css, theme=custom_theme) as demo:
    history_state = gr.State([])
    language_warning_count = gr.State(0)
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# SDXL Text-to-Image (waiNSFWIllustrious_v12-v14)", elem_id="title")
        with gr.Row():
            # LEFT: controls
            with gr.Column(scale=1, elem_id="left-col"):
                with gr.Row(elem_id="hide_controls_row"):
                    hide_controls_cb = gr.Checkbox(label="Hide advanced controls (mobile friendly)", value=False)
                with gr.Group(visible=True) as controls_group:
                    non_english_text = gr.Textbox(
                        label="Prompt to translate", placeholder="Enter text to translate", interactive=True, visible=False
                    )
                    translate_btn = gr.Button("translate", visible=False)
                    
                    prompt = gr.Text(
                        label="Prompt",
                        lines=2,
                        max_lines=6,
                        placeholder="Enter your prompt",
                        scale=1,
                        min_width=0,
                        autofocus=True,
                    )
                    quality_prompt = gr.Text(
                        label="Quality prompt",
                        value="masterpiece, best quality, fine details"
                    )
                    with gr.Group(visible=True) as adv_controls_group:
                        quality_prompt_toggle = gr.Checkbox(
                            label="Use quality prompt",
                            value=True
                        )
                        generations = gr.Slider(
                            label="Generations",
                            maximum=10,
                            minimum=1,
                            step=1,
                            value=1,
                            info="Control how many images are generated sequentially.",
                        )
                        model = gr.Radio(
                            choices=MODELS.keys(),
                            value="v140",
                            info="choose the model you want.",
                            label="Model",
                        )
                        token_count = gr.Number(
                            label="Token count",
                            info="SDXL models work best when the token count is <= 77."
                        )
                    run_button = gr.Button("Run", variant="primary")
                
            # RIGHT: image + toggle
            with gr.Column(scale=2):
                # two image views: FIT (responsive) and RAW (no scaling)
                result_fit = gr.Image(label="Result", show_label=False, elem_id="result_fit", visible=True)
                result_raw = gr.Image(label="Result (original size)", show_label=False, visible=False)

        # Advanced settings
        with gr.Accordion("Advanced Settings", open=False):
            no_rescale_cb = gr.Checkbox(
                label="Do not rescale to fit screen",
                value=False,
                info="Uncheck = fit preview to screen (default).",
                visible=True
            )
            translation_cb = gr.Checkbox(
                label="Enable translation",
                value=False,
                info="Enable translation for the prompt.",
                visible=True,
            )
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="blurry, low quality, watermark, monochrome, text",
            )
            with gr.Row():
                size_preset = gr.Dropdown(
                    ["768×768 (square)", "1024×1024", "832×1216 (portrait)", "1152×896 (landscape)", "768×1344 (portrait, lighter)"],
                    value="1024×1024",
                    label="Size preset",
                )


            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)

            with gr.Row():
                guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=12.0, step=0.1, value=6)
                num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=75, step=1, value=30)

            gr.Examples(examples=examples, inputs=[prompt])

        # Gallery + actions
        gallery = gr.Gallery(label="History", preview=True, columns=3, height=320)
        with gr.Row():
            clear_btn = gr.Button("Clear history", variant="secondary")
            download_btn = gr.Button("Download all")


    size_preset.change(fn=_apply_preset_ui, inputs=[size_preset], outputs=[width, height])

    def toggle_rescale(no_rescale: bool):
    # show FIT when not checked; show RAW when checked
        return gr.update(visible=not no_rescale), gr.update(visible=no_rescale)

    no_rescale_cb.change(fn=toggle_rescale, inputs=[no_rescale_cb], outputs=[result_fit, result_raw])
    
    
    def toggle_translate(on: bool):
        return gr.update(visible=on), gr.update(visible=on)

    def move_prompt_to_non_english(prompt_text: str):
        return gr.update(value=prompt_text), gr.update(value="")

    translation_cb.change(fn=toggle_translate, inputs=[translation_cb], outputs=[non_english_text, translate_btn])
    translation_cb.change(fn=move_prompt_to_non_english, inputs=[prompt], outputs=[non_english_text, prompt])

    @spaces.GPU()
    def translate_text(text):
        messages = [
            {"role": "user", "content": f"translate the following text into English: <start>{text}<end>. return the translated text only!"},
        ]
        translated_text = LLM_PIPELINE(messages, max_new_tokens=MAX_NEW_TOKENS, return_full_text=False)
        print("--------------------translation:------------------------ \n"
              f"non eng text: {text}"
              f"translated: {translated_text[0]['generated_text']}")
        return translated_text[0]['generated_text']
    translate_btn.click(fn=translate_text, inputs=[non_english_text], outputs=[prompt])

    # Mobile: hide/show controls group
    hide_controls_cb.change(fn=toggle_controls, inputs=[hide_controls_cb], outputs=[adv_controls_group])

    # Clear & Download
    clear_btn.click(fn=clear_history, inputs=None, outputs=[gallery, history_state])
    download_btn.click(fn=download_all, inputs=[history_state], outputs=[gr.File(label="images.zip")])
    

    quality_prompt_toggle.change(
        fn=toggle_quality_prompt,
        inputs=[quality_prompt_toggle],
        outputs=[quality_prompt]
    )
    
    prompt.change(
        fn=compute_token_count,
        inputs=[prompt, quality_prompt, quality_prompt_toggle],
        outputs=[token_count]
    )
    
    quality_prompt.change(
        fn=compute_token_count,
        inputs=[prompt, quality_prompt, quality_prompt_toggle],
        outputs=[token_count]
    )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[model, prompt, quality_prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, generations, history_state, quality_prompt_toggle, language_warning_count],
        outputs=[result_fit, result_raw, seed, gallery, history_state, language_warning_count],
    )


if __name__ == "__main__":
    demo.launch()