Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| import os | |
| from dotenv import load_dotenv | |
| from together import Together | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, BertTokenizer,DistilBertTokenizer, BertForSequenceClassification, DistilBertForSequenceClassification | |
| from datetime import datetime, timedelta | |
| import pandas as pd | |
| from task_css import get_custom_css # Import the custom CSS function | |
| import gdown | |
| # Set environment variable for offline mode | |
| os.environ["TRANSFORMERS_OFFLINE"] = "1" | |
| # Load environment variables | |
| load_dotenv() | |
| # Together AI Client with API key from environment variable | |
| client = Together(api_key=os.getenv("TOGETHER_API_KEY", "")) | |
| # Set device | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Load Intent Model | |
| intent_model_path = "intent_classifier.pth" | |
| # Extract file ID from Google Drive URL | |
| file_id = "1_GDGvV3MVvBguIsjMyDLg3RxUV_gnFAY" | |
| num_intent_labels = 151 # Moved this up before model creation | |
| # Load Emotion Model | |
| emotions_model_path = "./saved_model" | |
| emotions_folder_id = "1gYWkbC_XBw_GZjsfwXvubHFil4BCq_gH" | |
| # Add new pretrained model ID | |
| pretrained_folder_id = "13t_EB2LFhRIwb3dkKDtA0O5NXXZBoG-j" | |
| # Initialize Session State | |
| if "is_ready" not in st.session_state: | |
| st.session_state.is_ready = False | |
| st.session_state.models = {} # Initialize models dict immediately | |
| st.session_state.tasks = [] | |
| st.session_state.task_counter = 0 | |
| st.session_state.overall_emotion = None | |
| st.session_state.overall_emotion_label = "Neutral" | |
| # Page Configuration first | |
| st.set_page_config( | |
| page_title="π AI Productivity Assistant", | |
| layout="wide", | |
| page_icon="π―" | |
| ) | |
| # Custom CSS for enhanced styling | |
| st.markdown(get_custom_css(), unsafe_allow_html=True) | |
| # Show loading screen if models aren't ready | |
| if not st.session_state.is_ready: | |
| st.markdown( | |
| """ | |
| <div class="loading-container" style="text-align: center; padding: 50px;"> | |
| <div class="loading-spinner"></div> | |
| <h2>Setting up your AI assistant...</h2> | |
| <p>This may take a minute. We're downloading the required models.</p> | |
| </div> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # Load models here | |
| try: | |
| # First download pretrained models | |
| if not os.path.exists("pretrained_models"): | |
| with st.status("Downloading base models...", expanded=True) as status: | |
| os.makedirs("pretrained_models", exist_ok=True) | |
| gdown.download_folder( | |
| f"https://drive.google.com/drive/folders/{pretrained_folder_id}", | |
| output="pretrained_models", | |
| quiet=False | |
| ) | |
| status.update(label="Base models downloaded!", state="complete") | |
| # Intent Model Loading | |
| if not os.path.exists(intent_model_path): | |
| with st.status("Downloading intent model...", expanded=True) as status: | |
| output = gdown.download( | |
| f"https://drive.google.com/uc?id={file_id}", | |
| intent_model_path, | |
| quiet=False | |
| ) | |
| status.update(label="Intent model downloaded!", state="complete") | |
| # Emotion Model Loading | |
| if not os.path.exists(emotions_model_path): | |
| with st.status("Downloading emotion model...", expanded=True) as status: | |
| os.makedirs(emotions_model_path, exist_ok=True) | |
| gdown.download_folder( | |
| f"https://drive.google.com/drive/folders/{emotions_folder_id}", | |
| output=emotions_model_path, | |
| quiet=False | |
| ) | |
| status.update(label="Emotion model downloaded!", state="complete") | |
| # Load and store intent model | |
| intent_model = AutoModelForSequenceClassification.from_pretrained( | |
| "pretrained_models/bert-base-uncased", | |
| num_labels=num_intent_labels, | |
| ignore_mismatched_sizes=True, # Add this parameter | |
| local_files_only=True | |
| ) | |
| intent_model.load_state_dict( | |
| torch.load(intent_model_path, map_location=device, weights_only=True) | |
| ) | |
| st.session_state.models["intent_model"] = intent_model.to(device).eval() | |
| st.session_state.models["intent_tokenizer"] = AutoTokenizer.from_pretrained( | |
| "pretrained_models/bert-base-uncased", | |
| local_files_only=True | |
| ) | |
| # Load and store emotion model | |
| emotions_model = AutoModelForSequenceClassification.from_pretrained( | |
| emotions_model_path, | |
| ignore_mismatched_sizes=True, # Add this parameter | |
| local_files_only=True | |
| ) | |
| st.session_state.models["emotions_model"] = emotions_model.to(device).eval() | |
| st.session_state.models["emotions_tokenizer"] = AutoTokenizer.from_pretrained( | |
| emotions_model_path, | |
| local_files_only=True | |
| ) | |
| # Set ready state | |
| st.session_state.is_ready = True | |
| st.rerun() | |
| except Exception as e: | |
| st.error(f"Error loading models: {str(e)}") | |
| st.stop() | |
| # Only show main app if models are ready | |
| if st.session_state.is_ready: | |
| # Title with custom styling | |
| st.markdown('<div class="main-header">π― MoodifyTask: AI Task Prioritization & Wellness Assistant</div>', unsafe_allow_html=True) | |
| # Emotion Labels | |
| emotion_label_names = [ | |
| "admiration", "amusement", "anger", "annoyance", "approval", | |
| "caring", "confusion", "curiosity", "desire", "disappointment", | |
| "disapproval", "disgust", "embarrassment", "excitement", "fear", | |
| "gratitude", "grief", "joy", "love", "nervousness", | |
| "optimism", "pride", "realization", "relief", "remorse", | |
| "sadness", "surprise", "neutral" | |
| ] | |
| # Emotion Categories | |
| positive_emotions = ["admiration", "amusement", "approval", "caring", "curiosity", "excitement", "gratitude", "joy", "love", "optimism", "pride", "relief", "surprise"] | |
| negative_emotions = ["anger", "annoyance", "disappointment", "disapproval", "disgust", "embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"] | |
| neutral_emotions = ["realization", "neutral"] | |
| # Predict Intent | |
| def predict_intent(sentence): | |
| inputs = st.session_state.models["intent_tokenizer"]( | |
| sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128 | |
| ) | |
| inputs = {key: val.to(device) for key, val in inputs.items()} | |
| with torch.no_grad(): | |
| outputs = st.session_state.models["intent_model"](**inputs) | |
| predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0] | |
| # Mapping Intent IDs to Priorities (0-150) | |
| PRIORITY_MAPPING = { | |
| 5: [8, 35, 42, 74, 97, 110, 118, 120, 124, 136], # freeze_account, report_lost_card, flight_status, report_fraud, credit_limit, lost_luggage, dispute_charge, overdraft, cancel_reservation, emergency | |
| 4: [14, 15, 19, 20, 39, 47, 48, 49, 50, 69, 70, 71, 72], # bill_balance, bill_due, exchange_rate, credit_score, interest_rate, insurance, medical_expenses, appointment_schedule, meeting_schedule, dentist_appointment, doctor_appointment, prescription_refill, pharmacy_hours | |
| 3: [33, 34, 41, 51, 56, 57, 62, 66, 77, 78, 85], # hotel_reservation, car_rental, restaurant_reservation, tracking_package, check_in, check_out, traffic_update, directions, smart_home_on, smart_home_off, weather_forecast | |
| 2: [0, 1, 3, 6, 9, 13, 16, 17, 21, 25, 27, 28, 36, 40, 45, 52, 61], # restaurant_reviews, shopping_list, what_song, schedule_meeting, translate, play_music, book_hotel, book_flight, gas_prices, exchange_rate, movie_showtimes, recipe, cancel_flight, book_reservation, order_food, car_services, joke | |
| 1: [2, 4, 5, 7, 10, 11, 12, 18, 22, 23, 24, 26, 30, 31, 32, 37, 38, 43, 44, 46, 53, 54, 55, 58, 59, 60, 63, 64, 65, 67, 68, 73] | |
| # tell_joke, fun_fact, trivia, horoscope, dog_fact, cat_fact, define_word, stock_price, sports_update, lottery_results, currency_conversion, holiday_list, language_learning, random_fact, poem, quote, daily_horoscope, joke_request, music_recommendation, podcast_recommendation, celebrity_gossip, movie_recommendation, TV_show_recommendation, book_recommendation, game_recommendation, radio_recommendation, trivia_game, riddle, name_meaning, birthday_reminder, anniversary_reminder, affirmations | |
| } | |
| # Find the priority based on predicted_class | |
| predicted_intent_score = next((priority for priority, ids in PRIORITY_MAPPING.items() if predicted_class in ids), 1) # Default to 1 if not found | |
| return predicted_intent_score | |
| # Emotion to Numeric Score Mapping | |
| EMOTION_MAPPING = { | |
| "admiration": 4, "amusement": 3, "anger": 5, "annoyance": 4, "approval": 3, | |
| "caring": 4, "confusion": 3, "curiosity": 3, "desire": 4, "disappointment": 4, | |
| "disapproval": 4, "disgust": 5, "embarrassment": 4, "excitement": 5, "fear": 5, | |
| "gratitude": 3, "grief": 5, "joy": 5, "love": 5, "nervousness": 4, | |
| "optimism": 4, "pride": 4, "realization": 3, "relief": 3, "remorse": 4, | |
| "sadness": 5, "surprise": 3, "neutral": 3 | |
| } | |
| # Function to get numeric emotion score | |
| def get_emotion_score(emotion): | |
| return EMOTION_MAPPING.get(emotion.lower(), 3) # Default to 3 if not found | |
| # Predict Emotion | |
| def predict_emotion(sentence): | |
| if not sentence.strip(): | |
| return 3, "neutral" | |
| # Ensure the input is a full sentence | |
| if len(sentence.split()) == 1: | |
| sentence = f"I feel {sentence}" | |
| inputs = st.session_state.models["emotions_tokenizer"]( | |
| sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128 | |
| ) | |
| inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"} | |
| with torch.no_grad(): | |
| outputs = st.session_state.models["emotions_model"](**inputs) | |
| predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0] | |
| detected_emotion = emotion_label_names[predicted_class] | |
| # Manually adjust for stress/pressure-related words | |
| stress_keywords = ["stress", "stressed", "overwhelmed", "pressure", "tense", "burnout"] | |
| if any(word in sentence.lower() for word in stress_keywords): | |
| if detected_emotion not in ["sadness", "nervousness"]: | |
| detected_emotion = "nervousness" # Change to "sadness" if you prefer | |
| emotion_score = get_emotion_score(detected_emotion) | |
| if emotion_score is None: | |
| emotion_score = 3 # Default neutral score | |
| return emotion_score, detected_emotion | |
| # Get Emotion Category | |
| def get_emotion_category(emotion): | |
| if emotion in positive_emotions: | |
| return "positive" | |
| elif emotion in negative_emotions: | |
| return "negative" | |
| else: | |
| return "neutral" | |
| def normalize_priority(priority, min_value=0, max_value=10): | |
| return (priority - min_value) / (max_value - min_value) # Normalize between 0-1 | |
| # Calculate Task Priority | |
| def calculate_priority_score(predicted_intent_score,emotion_score, emotion, time_remaining, complexity, emotion_category): | |
| """ | |
| Calculate an adaptive priority score for tasks based on intent, emotion, time urgency, and complexity. | |
| """ | |
| emotion_score = emotion_score if emotion_score is not None else 3 | |
| # Normalize time urgency (scale 0 to 1 based on 7 days) | |
| time_score = max(0, min(1, 1 - (time_remaining.total_seconds() / (7 * 24 * 3600)))) | |
| # Set emotion-based adjustments | |
| stress_emotions = ["nervousness", "sadness", "fear"] | |
| frustration_emotions = ["anger", "frustration","disappointment","annoyance"] | |
| anxiety_emotions = ["anxiety", "uncertainty"] | |
| if emotion_category == "negative": | |
| if emotion in stress_emotions: | |
| # Prioritize **easy, quick** tasks to reduce cognitive load | |
| priority = (predicted_intent_score * 0.15) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.45) | |
| elif emotion in frustration_emotions: | |
| # Prioritize **engaging** tasks (not too easy) but keep urgency in mind | |
| priority = (predicted_intent_score * 0.2) + (emotion_score * 0.15) + (time_score * 0.25) + (complexity * 0.4) | |
| elif emotion in anxiety_emotions: | |
| # Prioritize **urgent, low-complexity** tasks | |
| priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.4) + ((10 - complexity) * 0.3) | |
| else: | |
| # Default for negative emotions: balance urgency and ease | |
| priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.4) | |
| elif emotion_category == "positive": | |
| # If the user is in a **good mood**, favor challenging, high-impact tasks | |
| priority = (predicted_intent_score * 0.35) + (emotion_score * 0.2) + (time_score * 0.25) + (complexity * 0.2) | |
| else: # Neutral emotion | |
| # Keep a balance between difficulty and urgency | |
| priority = (predicted_intent_score * 0.3) + (emotion_score * 0.2) + (time_score * 0.2) + (complexity * 0.3) | |
| return normalize_priority(priority) # Ensure no negative priority values | |
| # AI-Generated Plan Based on Start Time | |
| from datetime import datetime | |
| def get_llama_suggestion(emotion, tasks, selected_datetime): | |
| """Generate AI plan based on full datetime instead of just time""" | |
| # Sort tasks by priority (higher priority first) | |
| sorted_tasks = sorted(tasks, key=lambda x: x["priority_score"], reverse=True) | |
| # Filter tasks based on selected datetime | |
| filtered_tasks = [ | |
| task for task in sorted_tasks | |
| if task["due_date_time"] >= selected_datetime | |
| ] | |
| if not filtered_tasks: | |
| well_being_prompts = { | |
| "nervousness": "Suggest mindfulness exercises and short relaxation techniques.", | |
| "sadness": "Suggest comforting activities like journaling or light exercise.", | |
| "anger": "Suggest ways to channel frustration productively.", | |
| "joy": "Suggest ways to maintain productivity while feeling good.", | |
| "neutral": "Suggest general relaxation activities like listening to music." | |
| } | |
| well_being_prompt = f""" | |
| The user is feeling {emotion}. | |
| They have no tasks scheduled after {selected_datetime.strftime('%B %d, %I:%M %p')}. | |
| {well_being_prompts.get(emotion, 'Provide general well-being tips.')} | |
| """ | |
| try: | |
| response = client.chat.completions.create( | |
| messages=[{"role": "user", "content": well_being_prompt}], | |
| model="meta-llama/Llama-3.3-70B-Instruct-Turbo", | |
| temperature=0.7, | |
| ) | |
| return response.choices[0].message.content | |
| except Exception as e: | |
| return f"Error generating well-being tips: {e}" | |
| # Prepare the prompt with more detailed datetime information | |
| task_details = "\n".join([ | |
| f"- {task['description']} (Priority: {task['priority_score']:.2f}, Complexity: {task['complexity']}, Due: {task['due_date_time'].strftime('%B %d, %I:%M %p')})" | |
| for task in filtered_tasks | |
| ]) | |
| prompt = f""" | |
| The user is feeling {emotion}. | |
| They need a structured productivity plan starting from {selected_datetime.strftime('%B %d, %I:%M %p')}, not the current time. | |
| Their prioritized tasks (due on or after the selected time), sorted by priority score: | |
| {task_details} | |
| Please provide: | |
| 1. A detailed schedule with specific times for each task | |
| 2. Strategic breaks based on task complexity and emotional state | |
| 3. Wellness activities that complement their current emotion | |
| 4. Tips for managing tasks effectively given their emotional state | |
| 5. Suggestions for handling high-priority tasks first while maintaining well-being | |
| """ | |
| try: | |
| response = client.chat.completions.create( | |
| messages=[{"role": "user", "content": prompt}], | |
| model="meta-llama/Llama-3.3-70B-Instruct-Turbo", | |
| temperature=0.7, | |
| ) | |
| return response.choices[0].message.content | |
| except Exception as e: | |
| return f"Error generating AI plan: {e}" | |
| # Layout with improved spacing | |
| col1, col2 = st.columns([1, 1], gap="medium") | |
| with col1: | |
| # st.markdown('<div class="emotion-analysis">', unsafe_allow_html=True) | |
| st.markdown('<h3>π Mood Analysis</h3>', unsafe_allow_html=True) | |
| emotion_sentence = st.text_area( | |
| "Describe how you're feeling today:", | |
| value="", | |
| height=150, | |
| help="Your emotional state helps us prioritize tasks more effectively" | |
| ) | |
| if emotion_sentence: | |
| emotion_score, emotion_label = predict_emotion(emotion_sentence) | |
| st.session_state.overall_emotion = emotion_score | |
| st.session_state.overall_emotion_label = emotion_label | |
| st.markdown(f'<div class="emotion-badge">Detected Emotion: {emotion_label}</div>', unsafe_allow_html=True) | |
| # Emotion-based task reprioritization | |
| for task in st.session_state.tasks: | |
| task["priority_score"] = calculate_priority_score( | |
| task["predicted_intent_score"], | |
| emotion_score, | |
| emotion_label, | |
| task["time_remaining"], | |
| task["complexity"], | |
| get_emotion_category(emotion_label) | |
| ) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| with col2: | |
| # st.markdown('<div class="task-input">', unsafe_allow_html=True) | |
| st.markdown('<h3>π Add New Task</h3>', unsafe_allow_html=True) | |
| with st.form("task_form", clear_on_submit=True): | |
| task_description = st.text_input("Task Description", help="Be specific about what needs to be done") | |
| col_date, col_time = st.columns(2) | |
| with col_date: | |
| due_date = st.date_input("Due Date") | |
| with col_time: | |
| due_time = st.time_input("Due Time") | |
| complexity = st.slider( | |
| "Task Complexity (1-10)", | |
| 1, 10, 5, | |
| help="Higher complexity may affect task priority" | |
| ) | |
| submitted = st.form_submit_button("β Add Task") | |
| if submitted and task_description and due_date and due_time: | |
| due_date_time = datetime.combine(due_date, due_time) | |
| time_remaining = due_date_time - datetime.now() | |
| predicted_intent_score = predict_intent(task_description) | |
| task = { | |
| "id": st.session_state.task_counter, # Add unique ID | |
| "description": task_description, | |
| "due_date_time": due_date_time, | |
| "time_remaining": time_remaining, | |
| "complexity": complexity, | |
| "predicted_intent_score": predicted_intent_score, | |
| "predicted_emotion": st.session_state.overall_emotion, | |
| "predicted_label_name": st.session_state.overall_emotion_label, | |
| "priority_score": calculate_priority_score( | |
| predicted_intent_score, | |
| st.session_state.overall_emotion, | |
| st.session_state.overall_emotion_label, | |
| time_remaining, | |
| complexity, | |
| get_emotion_category(st.session_state.overall_emotion_label) | |
| ), | |
| "completed": False | |
| } | |
| st.session_state.tasks.append(task) | |
| st.session_state.task_counter += 1 # Increment counter | |
| st.success("β Task Added Successfully!") | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| # Task List with Improved Visualization | |
| if st.session_state.tasks: | |
| st.markdown('<h3>π Task Priority List</h3>', unsafe_allow_html=True) | |
| # Sort tasks by priority | |
| sorted_tasks = sorted(st.session_state.tasks, key=lambda x: x["priority_score"], reverse=True) | |
| # Create task overview cards | |
| st.markdown('<div class="task-overview">', unsafe_allow_html=True) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.markdown(f'<div class="metric-card"><div class="metric-value">{len(sorted_tasks)}</div><div class="metric-label">Total Tasks</div></div>', unsafe_allow_html=True) | |
| # with col2: | |
| # high_priority = len([t for t in sorted_tasks if t["priority_score"] > 0.7]) | |
| # st.markdown(f'<div class="metric-card"><div class="metric-value">{high_priority}</div><div class="metric-label">High Priority</div></div>', unsafe_allow_html=True) | |
| with col2: | |
| today = datetime.now() | |
| due_today = len([t for t in sorted_tasks if t["due_date_time"].date() == today.date()]) | |
| st.markdown(f'<div class="metric-card"><div class="metric-value">{due_today}</div><div class="metric-label">Due Today</div></div>', unsafe_allow_html=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| # Display tasks with priority-based styling | |
| for idx, task in enumerate(sorted_tasks): | |
| priority_class = "high-priority" if task["priority_score"] > 0.7 else "medium-priority" | |
| # Create a single row for task and buttons | |
| task_container = st.container() | |
| with task_container: | |
| cols = st.columns([0.8, 0.1, 0.1]) | |
| # Task content in first column | |
| with cols[0]: | |
| st.markdown(f""" | |
| <div class="priority-task {priority_class}"> | |
| <div class="task-content"> | |
| <div class="task-header"> | |
| <span class="task-title">{task["description"]}</span> | |
| <span class="priority-score">Priority: {task["priority_score"]:.2f}</span> | |
| </div> | |
| <div class="task-details"> | |
| <span class="task-stat">Due: {task["due_date_time"].strftime("%d %b, %I:%M %p")}</span> | |
| <span class="task-stat">Complexity: {task["complexity"]}</span> | |
| </div> | |
| </div> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| st.session_state.editing_task_id = None | |
| # Edit button | |
| with cols[1]: | |
| if st.button("βοΈ", key=f"edit_{idx}", help="Edit task"): | |
| st.session_state.editing_task_id = idx | |
| # Delete button | |
| with cols[2]: | |
| if st.button("ποΈ", key=f"delete_{idx}", help="Delete task"): | |
| st.session_state.tasks.pop(idx) | |
| st.success("Task deleted!") | |
| st.rerun() | |
| # Show edit form below the task if being edited | |
| if st.session_state.editing_task_id == idx: | |
| with st.form(key=f"edit_form_{idx}"): | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| new_description = st.text_input("Description", value=task["description"]) | |
| new_complexity = st.slider("Complexity", 1, 10, value=task["complexity"]) | |
| with col2: | |
| new_due_date = st.date_input("Due Date", value=task["due_date_time"].date()) | |
| new_due_time = st.time_input("Due Time", value=task["due_date_time"].time()) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| if st.form_submit_button("πΎ Save"): | |
| # Update task | |
| task["description"] = new_description | |
| task["due_date_time"] = datetime.combine(new_due_date, new_due_time) | |
| task["time_remaining"] = task["due_date_time"] - datetime.now() | |
| task["complexity"] = new_complexity | |
| # Recalculate priority | |
| task["priority_score"] = calculate_priority_score( | |
| task["predicted_intent_score"], | |
| task["predicted_emotion"], | |
| task["predicted_label_name"], | |
| task["time_remaining"], | |
| task["complexity"], | |
| get_emotion_category(task["predicted_label_name"]) | |
| ) | |
| st.session_state.editing_task_id = None | |
| st.success("Task updated!") | |
| st.rerun() | |
| with col2: | |
| if st.form_submit_button("β Cancel"): | |
| st.session_state.editing_task_id = None | |
| st.rerun() | |
| # AI Plan Section | |
| if st.session_state.tasks: | |
| st.markdown('<div class="custom-card">', unsafe_allow_html=True) | |
| st.markdown('<h3>β° AI Task Planning</h3>', unsafe_allow_html=True) | |
| col_date, col_time = st.columns(2) | |
| with col_date: | |
| plan_date = st.date_input("Select Plan Date", datetime.now().date()) | |
| with col_time: | |
| plan_time = st.time_input("Select Plan Start Time", datetime.now().time()) | |
| selected_datetime = datetime.combine(plan_date, plan_time) | |
| if st.button("π Generate AI Plan"): | |
| suggestion = get_llama_suggestion( | |
| st.session_state.overall_emotion_label, | |
| st.session_state.tasks, | |
| selected_datetime # Pass full datetime object | |
| ) | |
| st.markdown(f'<div class="info-box">{suggestion}</div>', unsafe_allow_html=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |