Spaces:
Sleeping
Sleeping
Upload 25 files
Browse files- .env +1 -0
- .gitattributes +4 -35
- .gitignore +15 -0
- classification_report.png +3 -0
- complexity_Score_finetuned.py +273 -0
- complexity_score.py +41 -0
- confusion_matrix.png +3 -0
- download_models.py +19 -0
- emotions.py +235 -0
- emotions.txt +140 -0
- intent_classifier.py +102 -0
- intent_graphs.py +88 -0
- intent_train.txt +25 -0
- model.py +140 -0
- mood_classifier.py +92 -0
- precision_recall_curve.png +3 -0
- predict_emotions.py +48 -0
- predict_intent.py +48 -0
- requirements.txt +13 -3
- task.py +558 -0
- task_css.py +458 -0
- task_prioritizer.py +105 -0
- task_ui.py +326 -0
- test_results.csv +5428 -0
- ui.png +3 -0
.env
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
TOGETHER_API_KEY=tgp_v1_ZtXpkMMiL0mcxIemzOwQgXn53Oc5Z7UvEwkusgTqtXQ
|
.gitattributes
CHANGED
|
@@ -1,35 +1,4 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
classification_report.png filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
confusion_matrix.png filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
precision_recall_curve.png filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
ui.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.pyc
|
| 3 |
+
.env
|
| 4 |
+
.env.local
|
| 5 |
+
.env.*.local
|
| 6 |
+
.vscode/
|
| 7 |
+
.idea/
|
| 8 |
+
.DS_Store
|
| 9 |
+
|
| 10 |
+
# Model files
|
| 11 |
+
saved_model/
|
| 12 |
+
*.pth
|
| 13 |
+
intent_classifier.pth
|
| 14 |
+
|
| 15 |
+
|
classification_report.png
ADDED
|
Git LFS Details
|
complexity_Score_finetuned.py
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<<<<<<< HEAD
|
| 2 |
+
import torch
|
| 3 |
+
import random
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
| 8 |
+
from torch.utils.data import DataLoader
|
| 9 |
+
from transformers import AdamW
|
| 10 |
+
from sklearn.metrics import r2_score, f1_score, mean_absolute_error
|
| 11 |
+
|
| 12 |
+
# Set random seed for reproducibility
|
| 13 |
+
torch.manual_seed(42)
|
| 14 |
+
np.random.seed(42)
|
| 15 |
+
random.seed(42)
|
| 16 |
+
|
| 17 |
+
# Load DEITA-Complexity dataset
|
| 18 |
+
dataset = load_dataset("hkust-nlp/deita-complexity-scorer-data")
|
| 19 |
+
val_data = dataset["validation"]
|
| 20 |
+
|
| 21 |
+
# Initialize tokenizer
|
| 22 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
|
| 23 |
+
|
| 24 |
+
# Preprocessing function
|
| 25 |
+
def preprocess_function(examples):
|
| 26 |
+
return tokenizer(examples["input"], truncation=True, padding="max_length", max_length=128)
|
| 27 |
+
|
| 28 |
+
# Tokenize validation dataset
|
| 29 |
+
val_encodings = val_data.map(preprocess_function, batched=True)
|
| 30 |
+
|
| 31 |
+
# Inspect the structure of val_encodings
|
| 32 |
+
print("Validation Encodings Structure:")
|
| 33 |
+
print(val_encodings)
|
| 34 |
+
|
| 35 |
+
# Convert dataset to PyTorch format
|
| 36 |
+
class ComplexityDataset(torch.utils.data.Dataset):
|
| 37 |
+
def __init__(self, encodings):
|
| 38 |
+
self.encodings = encodings
|
| 39 |
+
|
| 40 |
+
def __len__(self):
|
| 41 |
+
return len(self.encodings['input_ids'])
|
| 42 |
+
|
| 43 |
+
def __getitem__(self, idx):
|
| 44 |
+
# Create a dictionary for the inputs
|
| 45 |
+
item = {
|
| 46 |
+
"input_ids": torch.tensor(self.encodings['input_ids'][idx]),
|
| 47 |
+
"attention_mask": torch.tensor(self.encodings['attention_mask'][idx]),
|
| 48 |
+
# Convert target to float if it's a string
|
| 49 |
+
"labels": torch.tensor(float(self.encodings['target'][idx]), dtype=torch.float) # Ensure 'target' is numeric
|
| 50 |
+
}
|
| 51 |
+
return item
|
| 52 |
+
|
| 53 |
+
val_dataset = ComplexityDataset(val_encodings)
|
| 54 |
+
|
| 55 |
+
# Load pre-trained DistilBERT model
|
| 56 |
+
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=1)
|
| 57 |
+
|
| 58 |
+
# Freeze first 4 transformer layers
|
| 59 |
+
for layer in model.distilbert.transformer.layer[:4]:
|
| 60 |
+
for param in layer.parameters():
|
| 61 |
+
param.requires_grad = False
|
| 62 |
+
|
| 63 |
+
# Define optimizer
|
| 64 |
+
optimizer = AdamW(model.parameters(), lr=2e-5)
|
| 65 |
+
|
| 66 |
+
# Use GPU if available
|
| 67 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 68 |
+
model.to(device)
|
| 69 |
+
|
| 70 |
+
# DataLoader for batching
|
| 71 |
+
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
|
| 72 |
+
|
| 73 |
+
# Evaluation function
|
| 74 |
+
def evaluate_model(model, val_loader):
|
| 75 |
+
model.eval()
|
| 76 |
+
val_loss = 0.0
|
| 77 |
+
total_mae = 0.0
|
| 78 |
+
all_predictions = []
|
| 79 |
+
all_labels = []
|
| 80 |
+
|
| 81 |
+
with torch.no_grad():
|
| 82 |
+
for batch in tqdm(val_loader, desc="Evaluating", leave=False):
|
| 83 |
+
batch = {key: val.to(device) for key, val in batch.items()}
|
| 84 |
+
outputs = model(**batch)
|
| 85 |
+
loss = torch.nn.functional.mse_loss(outputs.logits.squeeze(), batch["labels"])
|
| 86 |
+
|
| 87 |
+
val_loss += loss.item()
|
| 88 |
+
total_mae += torch.nn.functional.l1_loss(outputs.logits.squeeze(), batch["labels"], reduction="sum").item()
|
| 89 |
+
|
| 90 |
+
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
|
| 91 |
+
all_labels.extend(batch["labels"].cpu().numpy())
|
| 92 |
+
|
| 93 |
+
avg_val_loss = val_loss / len(val_loader)
|
| 94 |
+
avg_val_mae = total_mae / len(val_loader.dataset)
|
| 95 |
+
|
| 96 |
+
# Calculate additional metrics
|
| 97 |
+
r2 = r2_score(all_labels, all_predictions)
|
| 98 |
+
f1 = f1_score(np.round(all_labels), np.round(all_predictions), average='weighted')
|
| 99 |
+
|
| 100 |
+
return avg_val_loss, avg_val_mae, r2, f1, all_predictions, all_labels
|
| 101 |
+
|
| 102 |
+
# Evaluate the model
|
| 103 |
+
val_loss, val_mae, r2, f1, predictions, labels = evaluate_model(model, val_loader)
|
| 104 |
+
|
| 105 |
+
print(f"Validation Loss = {val_loss:.4f}, Validation MAE = {val_mae:.4f}, R² Score = {r2:.4f}, F1 Score = {f1:.4f}")
|
| 106 |
+
|
| 107 |
+
# Testing the model (inference on the validation set)
|
| 108 |
+
def test_model(model, val_loader):
|
| 109 |
+
model.eval()
|
| 110 |
+
all_predictions = []
|
| 111 |
+
all_labels = []
|
| 112 |
+
|
| 113 |
+
with torch.no_grad():
|
| 114 |
+
for batch in tqdm(val_loader, desc="Testing", leave=False):
|
| 115 |
+
batch = {key: val.to(device) for key, val in batch.items()}
|
| 116 |
+
outputs = model(**batch)
|
| 117 |
+
|
| 118 |
+
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
|
| 119 |
+
all_labels.extend(batch["labels"].cpu().numpy())
|
| 120 |
+
|
| 121 |
+
return np.array(all_predictions), np.array(all_labels)
|
| 122 |
+
|
| 123 |
+
# Get predictions and labels from the test function
|
| 124 |
+
test_predictions, test_labels = test_model(model, val_loader)
|
| 125 |
+
|
| 126 |
+
# You can also calculate the evaluation metrics on the test predictions
|
| 127 |
+
test_r2 = r2_score(test_labels, test_predictions)
|
| 128 |
+
test_f1 = f1_score(np.round(test_labels), np.round(test_predictions), average='weighted')
|
| 129 |
+
|
| 130 |
+
print(f"Test R² Score = {test_r2:.4f}, Test F1 Score = {test_f1:.4f}")
|
| 131 |
+
|
| 132 |
+
# Save the fine-tuned model
|
| 133 |
+
model.save_pretrained("fine_tuned_deita_model")
|
| 134 |
+
tokenizer.save_pretrained("fine_tuned_deita_model")
|
| 135 |
+
|
| 136 |
+
print("✅ Evaluation and testing complete! Model saved at 'fine_tuned_deita_model'.")
|
| 137 |
+
=======
|
| 138 |
+
import torch
|
| 139 |
+
import random
|
| 140 |
+
import numpy as np
|
| 141 |
+
from tqdm import tqdm
|
| 142 |
+
from datasets import load_dataset
|
| 143 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
| 144 |
+
from torch.utils.data import DataLoader
|
| 145 |
+
from transformers import AdamW
|
| 146 |
+
from sklearn.metrics import r2_score, f1_score, mean_absolute_error
|
| 147 |
+
|
| 148 |
+
# Set random seed for reproducibility
|
| 149 |
+
torch.manual_seed(42)
|
| 150 |
+
np.random.seed(42)
|
| 151 |
+
random.seed(42)
|
| 152 |
+
|
| 153 |
+
# Load DEITA-Complexity dataset
|
| 154 |
+
dataset = load_dataset("hkust-nlp/deita-complexity-scorer-data")
|
| 155 |
+
val_data = dataset["validation"]
|
| 156 |
+
|
| 157 |
+
# Initialize tokenizer
|
| 158 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
|
| 159 |
+
|
| 160 |
+
# Preprocessing function
|
| 161 |
+
def preprocess_function(examples):
|
| 162 |
+
return tokenizer(examples["input"], truncation=True, padding="max_length", max_length=128)
|
| 163 |
+
|
| 164 |
+
# Tokenize validation dataset
|
| 165 |
+
val_encodings = val_data.map(preprocess_function, batched=True)
|
| 166 |
+
|
| 167 |
+
# Inspect the structure of val_encodings
|
| 168 |
+
print("Validation Encodings Structure:")
|
| 169 |
+
print(val_encodings)
|
| 170 |
+
|
| 171 |
+
# Convert dataset to PyTorch format
|
| 172 |
+
class ComplexityDataset(torch.utils.data.Dataset):
|
| 173 |
+
def __init__(self, encodings):
|
| 174 |
+
self.encodings = encodings
|
| 175 |
+
|
| 176 |
+
def __len__(self):
|
| 177 |
+
return len(self.encodings['input_ids'])
|
| 178 |
+
|
| 179 |
+
def __getitem__(self, idx):
|
| 180 |
+
# Create a dictionary for the inputs
|
| 181 |
+
item = {
|
| 182 |
+
"input_ids": torch.tensor(self.encodings['input_ids'][idx]),
|
| 183 |
+
"attention_mask": torch.tensor(self.encodings['attention_mask'][idx]),
|
| 184 |
+
# Convert target to float if it's a string
|
| 185 |
+
"labels": torch.tensor(float(self.encodings['target'][idx]), dtype=torch.float) # Ensure 'target' is numeric
|
| 186 |
+
}
|
| 187 |
+
return item
|
| 188 |
+
|
| 189 |
+
val_dataset = ComplexityDataset(val_encodings)
|
| 190 |
+
|
| 191 |
+
# Load pre-trained DistilBERT model
|
| 192 |
+
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=1)
|
| 193 |
+
|
| 194 |
+
# Freeze first 4 transformer layers
|
| 195 |
+
for layer in model.distilbert.transformer.layer[:4]:
|
| 196 |
+
for param in layer.parameters():
|
| 197 |
+
param.requires_grad = False
|
| 198 |
+
|
| 199 |
+
# Define optimizer
|
| 200 |
+
optimizer = AdamW(model.parameters(), lr=2e-5)
|
| 201 |
+
|
| 202 |
+
# Use GPU if available
|
| 203 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 204 |
+
model.to(device)
|
| 205 |
+
|
| 206 |
+
# DataLoader for batching
|
| 207 |
+
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
|
| 208 |
+
|
| 209 |
+
# Evaluation function
|
| 210 |
+
def evaluate_model(model, val_loader):
|
| 211 |
+
model.eval()
|
| 212 |
+
val_loss = 0.0
|
| 213 |
+
total_mae = 0.0
|
| 214 |
+
all_predictions = []
|
| 215 |
+
all_labels = []
|
| 216 |
+
|
| 217 |
+
with torch.no_grad():
|
| 218 |
+
for batch in tqdm(val_loader, desc="Evaluating", leave=False):
|
| 219 |
+
batch = {key: val.to(device) for key, val in batch.items()}
|
| 220 |
+
outputs = model(**batch)
|
| 221 |
+
loss = torch.nn.functional.mse_loss(outputs.logits.squeeze(), batch["labels"])
|
| 222 |
+
|
| 223 |
+
val_loss += loss.item()
|
| 224 |
+
total_mae += torch.nn.functional.l1_loss(outputs.logits.squeeze(), batch["labels"], reduction="sum").item()
|
| 225 |
+
|
| 226 |
+
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
|
| 227 |
+
all_labels.extend(batch["labels"].cpu().numpy())
|
| 228 |
+
|
| 229 |
+
avg_val_loss = val_loss / len(val_loader)
|
| 230 |
+
avg_val_mae = total_mae / len(val_loader.dataset)
|
| 231 |
+
|
| 232 |
+
# Calculate additional metrics
|
| 233 |
+
r2 = r2_score(all_labels, all_predictions)
|
| 234 |
+
f1 = f1_score(np.round(all_labels), np.round(all_predictions), average='weighted')
|
| 235 |
+
|
| 236 |
+
return avg_val_loss, avg_val_mae, r2, f1, all_predictions, all_labels
|
| 237 |
+
|
| 238 |
+
# Evaluate the model
|
| 239 |
+
val_loss, val_mae, r2, f1, predictions, labels = evaluate_model(model, val_loader)
|
| 240 |
+
|
| 241 |
+
print(f"Validation Loss = {val_loss:.4f}, Validation MAE = {val_mae:.4f}, R² Score = {r2:.4f}, F1 Score = {f1:.4f}")
|
| 242 |
+
|
| 243 |
+
# Testing the model (inference on the validation set)
|
| 244 |
+
def test_model(model, val_loader):
|
| 245 |
+
model.eval()
|
| 246 |
+
all_predictions = []
|
| 247 |
+
all_labels = []
|
| 248 |
+
|
| 249 |
+
with torch.no_grad():
|
| 250 |
+
for batch in tqdm(val_loader, desc="Testing", leave=False):
|
| 251 |
+
batch = {key: val.to(device) for key, val in batch.items()}
|
| 252 |
+
outputs = model(**batch)
|
| 253 |
+
|
| 254 |
+
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
|
| 255 |
+
all_labels.extend(batch["labels"].cpu().numpy())
|
| 256 |
+
|
| 257 |
+
return np.array(all_predictions), np.array(all_labels)
|
| 258 |
+
|
| 259 |
+
# Get predictions and labels from the test function
|
| 260 |
+
test_predictions, test_labels = test_model(model, val_loader)
|
| 261 |
+
|
| 262 |
+
# You can also calculate the evaluation metrics on the test predictions
|
| 263 |
+
test_r2 = r2_score(test_labels, test_predictions)
|
| 264 |
+
test_f1 = f1_score(np.round(test_labels), np.round(test_predictions), average='weighted')
|
| 265 |
+
|
| 266 |
+
print(f"Test R² Score = {test_r2:.4f}, Test F1 Score = {test_f1:.4f}")
|
| 267 |
+
|
| 268 |
+
# Save the fine-tuned model
|
| 269 |
+
model.save_pretrained("fine_tuned_deita_model")
|
| 270 |
+
tokenizer.save_pretrained("fine_tuned_deita_model")
|
| 271 |
+
|
| 272 |
+
print("✅ Evaluation and testing complete! Model saved at 'fine_tuned_deita_model'.")
|
| 273 |
+
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|
complexity_score.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<<<<<<< HEAD
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load the tokenizer and model
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2")
|
| 7 |
+
model = AutoModelForSequenceClassification.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2")
|
| 8 |
+
|
| 9 |
+
# Example task
|
| 10 |
+
task_description = "find a new theory"
|
| 11 |
+
|
| 12 |
+
# Tokenize the input
|
| 13 |
+
inputs = tokenizer(task_description, return_tensors="pt")
|
| 14 |
+
|
| 15 |
+
# Perform inference
|
| 16 |
+
with torch.no_grad():
|
| 17 |
+
outputs = model(**inputs)
|
| 18 |
+
complexity_score = torch.sigmoid(outputs.logits).item()
|
| 19 |
+
|
| 20 |
+
print(f"Task Complexity Score: {complexity_score:.4f}")
|
| 21 |
+
=======
|
| 22 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 23 |
+
import torch
|
| 24 |
+
|
| 25 |
+
# Load the tokenizer and model
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2")
|
| 27 |
+
model = AutoModelForSequenceClassification.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2")
|
| 28 |
+
|
| 29 |
+
# Example task
|
| 30 |
+
task_description = "find a new theory"
|
| 31 |
+
|
| 32 |
+
# Tokenize the input
|
| 33 |
+
inputs = tokenizer(task_description, return_tensors="pt")
|
| 34 |
+
|
| 35 |
+
# Perform inference
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
outputs = model(**inputs)
|
| 38 |
+
complexity_score = torch.sigmoid(outputs.logits).item()
|
| 39 |
+
|
| 40 |
+
print(f"Task Complexity Score: {complexity_score:.4f}")
|
| 41 |
+
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|
confusion_matrix.png
ADDED
|
Git LFS Details
|
download_models.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
|
| 4 |
+
def download_base_models():
|
| 5 |
+
# Create models directory
|
| 6 |
+
os.makedirs("pretrained_models", exist_ok=True)
|
| 7 |
+
|
| 8 |
+
print("Downloading BERT base model...")
|
| 9 |
+
# Download and save BERT base model
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 11 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
|
| 12 |
+
|
| 13 |
+
# Save models locally
|
| 14 |
+
tokenizer.save_pretrained("pretrained_models/bert-base-uncased")
|
| 15 |
+
model.save_pretrained("pretrained_models/bert-base-uncased")
|
| 16 |
+
print("Base models downloaded successfully!")
|
| 17 |
+
|
| 18 |
+
if __name__ == "__main__":
|
| 19 |
+
download_base_models()
|
emotions.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<<<<<<< HEAD
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
from datasets import load_dataset, Dataset
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
| 6 |
+
import numpy as np
|
| 7 |
+
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, classification_report
|
| 8 |
+
|
| 9 |
+
# Load dataset
|
| 10 |
+
dataset = load_dataset("go_emotions")
|
| 11 |
+
|
| 12 |
+
# Print dataset columns
|
| 13 |
+
print("Dataset Columns Before Preprocessing:", dataset["train"].column_names)
|
| 14 |
+
|
| 15 |
+
# Ensure labels exist
|
| 16 |
+
if "labels" not in dataset["train"].column_names:
|
| 17 |
+
raise KeyError("Column 'labels' is missing! Check dataset structure.")
|
| 18 |
+
|
| 19 |
+
# Load tokenizer
|
| 20 |
+
model_checkpoint = "distilbert-base-uncased"
|
| 21 |
+
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 23 |
+
|
| 24 |
+
# Preprocessing function (Take only the first label for single-label classification)
|
| 25 |
+
def preprocess_data(batch):
|
| 26 |
+
encoding = tokenizer(batch["text"], padding="max_length", truncation=True)
|
| 27 |
+
|
| 28 |
+
# Take only the first label (for single-label classification)
|
| 29 |
+
encoding["labels"] = batch["labels"][0] if batch["labels"] else 0 # Default to 0 if empty
|
| 30 |
+
return encoding
|
| 31 |
+
|
| 32 |
+
# Tokenize dataset
|
| 33 |
+
encoded_dataset = dataset.map(preprocess_data, batched=False, remove_columns=["text"])
|
| 34 |
+
|
| 35 |
+
# Set format for PyTorch
|
| 36 |
+
encoded_dataset.set_format("torch")
|
| 37 |
+
|
| 38 |
+
# Load model for single-label classification (28 classes)
|
| 39 |
+
num_labels = 28 # Change based on dataset labels
|
| 40 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels)
|
| 41 |
+
|
| 42 |
+
# Training arguments
|
| 43 |
+
args = TrainingArguments(
|
| 44 |
+
output_dir="./results",
|
| 45 |
+
eval_strategy="epoch",
|
| 46 |
+
save_strategy="epoch",
|
| 47 |
+
save_total_limit=1,
|
| 48 |
+
logging_strategy="no",
|
| 49 |
+
per_device_train_batch_size=32, # Increase batch size
|
| 50 |
+
per_device_eval_batch_size=32,
|
| 51 |
+
num_train_epochs=2, # Reduce epochs
|
| 52 |
+
weight_decay=0.01,
|
| 53 |
+
load_best_model_at_end=True,
|
| 54 |
+
fp16=True, # Mixed precision for speedup
|
| 55 |
+
gradient_accumulation_steps=2, # Helps with large batch sizes
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Compute metrics function
|
| 60 |
+
def compute_metrics(eval_pred):
|
| 61 |
+
logits, labels = eval_pred
|
| 62 |
+
|
| 63 |
+
# Convert logits to class predictions
|
| 64 |
+
predictions = np.argmax(logits, axis=-1)
|
| 65 |
+
|
| 66 |
+
accuracy = accuracy_score(labels, predictions)
|
| 67 |
+
f1 = f1_score(labels, predictions, average="weighted")
|
| 68 |
+
|
| 69 |
+
return {"accuracy": accuracy, "f1": f1}
|
| 70 |
+
|
| 71 |
+
# Initialize Trainer
|
| 72 |
+
trainer = Trainer(
|
| 73 |
+
model=model,
|
| 74 |
+
args=args,
|
| 75 |
+
train_dataset=encoded_dataset["train"],
|
| 76 |
+
eval_dataset=encoded_dataset["validation"],
|
| 77 |
+
compute_metrics=compute_metrics
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Train model
|
| 81 |
+
trainer.train()
|
| 82 |
+
print("Training completed!")
|
| 83 |
+
|
| 84 |
+
# Save model and tokenizer
|
| 85 |
+
model.save_pretrained("./saved_model")
|
| 86 |
+
tokenizer.save_pretrained("./saved_model")
|
| 87 |
+
print("Model and tokenizer saved!")
|
| 88 |
+
|
| 89 |
+
# ====== Evaluation on Test Set ======
|
| 90 |
+
print("\nEvaluating model on test set...")
|
| 91 |
+
|
| 92 |
+
# Get test dataset
|
| 93 |
+
test_dataset = encoded_dataset["test"]
|
| 94 |
+
|
| 95 |
+
# Make predictions
|
| 96 |
+
predictions = trainer.predict(test_dataset)
|
| 97 |
+
logits = predictions.predictions
|
| 98 |
+
|
| 99 |
+
# Convert logits to class predictions
|
| 100 |
+
y_pred = np.argmax(logits, axis=-1)
|
| 101 |
+
y_true = test_dataset["labels"].numpy()
|
| 102 |
+
|
| 103 |
+
# Compute accuracy and F1-score
|
| 104 |
+
accuracy = accuracy_score(y_true, y_pred)
|
| 105 |
+
f1 = f1_score(y_true, y_pred, average="weighted")
|
| 106 |
+
|
| 107 |
+
# Print evaluation results
|
| 108 |
+
print("\nEvaluation Results:")
|
| 109 |
+
print(f"Test Accuracy: {accuracy:.4f}")
|
| 110 |
+
print(f"Test F1 Score: {f1:.4f}")
|
| 111 |
+
|
| 112 |
+
# Print classification report
|
| 113 |
+
print("\nClassification Report:\n", classification_report(y_true, y_pred))
|
| 114 |
+
|
| 115 |
+
# Save test results
|
| 116 |
+
pd.DataFrame({"true_labels": y_true.tolist(), "predicted_labels": y_pred.tolist()}).to_csv("test_results.csv", index=False)
|
| 117 |
+
print("Test results saved to 'test_results.csv'!")
|
| 118 |
+
=======
|
| 119 |
+
import pandas as pd
|
| 120 |
+
import torch
|
| 121 |
+
from datasets import load_dataset, Dataset
|
| 122 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
| 123 |
+
import numpy as np
|
| 124 |
+
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, classification_report
|
| 125 |
+
|
| 126 |
+
# Load dataset
|
| 127 |
+
dataset = load_dataset("go_emotions")
|
| 128 |
+
|
| 129 |
+
# Print dataset columns
|
| 130 |
+
print("Dataset Columns Before Preprocessing:", dataset["train"].column_names)
|
| 131 |
+
|
| 132 |
+
# Ensure labels exist
|
| 133 |
+
if "labels" not in dataset["train"].column_names:
|
| 134 |
+
raise KeyError("Column 'labels' is missing! Check dataset structure.")
|
| 135 |
+
|
| 136 |
+
# Load tokenizer
|
| 137 |
+
model_checkpoint = "distilbert-base-uncased"
|
| 138 |
+
|
| 139 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 140 |
+
|
| 141 |
+
# Preprocessing function (Take only the first label for single-label classification)
|
| 142 |
+
def preprocess_data(batch):
|
| 143 |
+
encoding = tokenizer(batch["text"], padding="max_length", truncation=True)
|
| 144 |
+
|
| 145 |
+
# Take only the first label (for single-label classification)
|
| 146 |
+
encoding["labels"] = batch["labels"][0] if batch["labels"] else 0 # Default to 0 if empty
|
| 147 |
+
return encoding
|
| 148 |
+
|
| 149 |
+
# Tokenize dataset
|
| 150 |
+
encoded_dataset = dataset.map(preprocess_data, batched=False, remove_columns=["text"])
|
| 151 |
+
|
| 152 |
+
# Set format for PyTorch
|
| 153 |
+
encoded_dataset.set_format("torch")
|
| 154 |
+
|
| 155 |
+
# Load model for single-label classification (28 classes)
|
| 156 |
+
num_labels = 28 # Change based on dataset labels
|
| 157 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels)
|
| 158 |
+
|
| 159 |
+
# Training arguments
|
| 160 |
+
args = TrainingArguments(
|
| 161 |
+
output_dir="./results",
|
| 162 |
+
eval_strategy="epoch",
|
| 163 |
+
save_strategy="epoch",
|
| 164 |
+
save_total_limit=1,
|
| 165 |
+
logging_strategy="no",
|
| 166 |
+
per_device_train_batch_size=32, # Increase batch size
|
| 167 |
+
per_device_eval_batch_size=32,
|
| 168 |
+
num_train_epochs=2, # Reduce epochs
|
| 169 |
+
weight_decay=0.01,
|
| 170 |
+
load_best_model_at_end=True,
|
| 171 |
+
fp16=True, # Mixed precision for speedup
|
| 172 |
+
gradient_accumulation_steps=2, # Helps with large batch sizes
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# Compute metrics function
|
| 177 |
+
def compute_metrics(eval_pred):
|
| 178 |
+
logits, labels = eval_pred
|
| 179 |
+
|
| 180 |
+
# Convert logits to class predictions
|
| 181 |
+
predictions = np.argmax(logits, axis=-1)
|
| 182 |
+
|
| 183 |
+
accuracy = accuracy_score(labels, predictions)
|
| 184 |
+
f1 = f1_score(labels, predictions, average="weighted")
|
| 185 |
+
|
| 186 |
+
return {"accuracy": accuracy, "f1": f1}
|
| 187 |
+
|
| 188 |
+
# Initialize Trainer
|
| 189 |
+
trainer = Trainer(
|
| 190 |
+
model=model,
|
| 191 |
+
args=args,
|
| 192 |
+
train_dataset=encoded_dataset["train"],
|
| 193 |
+
eval_dataset=encoded_dataset["validation"],
|
| 194 |
+
compute_metrics=compute_metrics
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# Train model
|
| 198 |
+
trainer.train()
|
| 199 |
+
print("Training completed!")
|
| 200 |
+
|
| 201 |
+
# Save model and tokenizer
|
| 202 |
+
model.save_pretrained("./saved_model")
|
| 203 |
+
tokenizer.save_pretrained("./saved_model")
|
| 204 |
+
print("Model and tokenizer saved!")
|
| 205 |
+
|
| 206 |
+
# ====== Evaluation on Test Set ======
|
| 207 |
+
print("\nEvaluating model on test set...")
|
| 208 |
+
|
| 209 |
+
# Get test dataset
|
| 210 |
+
test_dataset = encoded_dataset["test"]
|
| 211 |
+
|
| 212 |
+
# Make predictions
|
| 213 |
+
predictions = trainer.predict(test_dataset)
|
| 214 |
+
logits = predictions.predictions
|
| 215 |
+
|
| 216 |
+
# Convert logits to class predictions
|
| 217 |
+
y_pred = np.argmax(logits, axis=-1)
|
| 218 |
+
y_true = test_dataset["labels"].numpy()
|
| 219 |
+
|
| 220 |
+
# Compute accuracy and F1-score
|
| 221 |
+
accuracy = accuracy_score(y_true, y_pred)
|
| 222 |
+
f1 = f1_score(y_true, y_pred, average="weighted")
|
| 223 |
+
|
| 224 |
+
# Print evaluation results
|
| 225 |
+
print("\nEvaluation Results:")
|
| 226 |
+
print(f"Test Accuracy: {accuracy:.4f}")
|
| 227 |
+
print(f"Test F1 Score: {f1:.4f}")
|
| 228 |
+
|
| 229 |
+
# Print classification report
|
| 230 |
+
print("\nClassification Report:\n", classification_report(y_true, y_pred))
|
| 231 |
+
|
| 232 |
+
# Save test results
|
| 233 |
+
pd.DataFrame({"true_labels": y_true.tolist(), "predicted_labels": y_pred.tolist()}).to_csv("test_results.csv", index=False)
|
| 234 |
+
print("Test results saved to 'test_results.csv'!")
|
| 235 |
+
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|
emotions.txt
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<<<<<<< HEAD
|
| 2 |
+
PS C:\Users\NAVYA\Documents\moodify> python emotions.py
|
| 3 |
+
2025-02-26 20:38:46.440320: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
| 4 |
+
2025-02-26 20:38:47.658979: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
| 5 |
+
WARNING:tensorflow:From C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.
|
| 6 |
+
|
| 7 |
+
Dataset Columns Before Preprocessing: ['text', 'labels', 'id']
|
| 8 |
+
Map: 100%|█████████████████████████████████████████████████████████████████████████████████████| 43410/43410 [00:22<00:00, 1958.97 examples/s]
|
| 9 |
+
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████| 5426/5426 [00:03<00:00, 1796.32 examples/s]
|
| 10 |
+
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████| 5427/5427 [00:02<00:00, 1936.32 examples/s]
|
| 11 |
+
Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']
|
| 12 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
| 13 |
+
{'eval_loss': 1.414624571800232, 'eval_accuracy': 0.5748249170659786, 'eval_f1': 0.55625264544128, 'eval_runtime': 37.1848, 'eval_samples_per_second': 145.92, 'eval_steps_per_second': 4.572, 'epoch': 1.0}
|
| 14 |
+
{'eval_loss': 1.3568519353866577, 'eval_accuracy': 0.5895687430888316, 'eval_f1': 0.5727110766843768, 'eval_runtime': 38.7582, 'eval_samples_per_second': 139.996, 'eval_steps_per_second': 4.386, 'epoch': 2.0}
|
| 15 |
+
{'train_runtime': 6368.0108, 'train_samples_per_second': 13.634, 'train_steps_per_second': 0.213, 'train_loss': 1.50392983585684, 'epoch': 2.0}
|
| 16 |
+
100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 1356/1356 [1:46:08<00:00, 4.70s/it]
|
| 17 |
+
Training completed!
|
| 18 |
+
Model and tokenizer saved!
|
| 19 |
+
|
| 20 |
+
Evaluating model on test set...
|
| 21 |
+
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 170/170 [00:38<00:00, 4.43it/s]
|
| 22 |
+
|
| 23 |
+
Evaluation Results:
|
| 24 |
+
Test Accuracy: 0.5779
|
| 25 |
+
Test F1 Score: 0.5608
|
| 26 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
| 27 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
| 28 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
| 29 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
| 30 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
| 31 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
| 32 |
+
|
| 33 |
+
Classification Report:
|
| 34 |
+
precision recall f1-score support
|
| 35 |
+
|
| 36 |
+
0 0.65 0.74 0.69 504
|
| 37 |
+
1 0.73 0.86 0.79 252
|
| 38 |
+
2 0.47 0.47 0.47 197
|
| 39 |
+
3 0.32 0.20 0.25 286
|
| 40 |
+
4 0.54 0.35 0.42 318
|
| 41 |
+
5 0.46 0.40 0.43 114
|
| 42 |
+
6 0.47 0.39 0.43 139
|
| 43 |
+
7 0.43 0.61 0.51 233
|
| 44 |
+
8 0.60 0.42 0.49 74
|
| 45 |
+
9 0.38 0.22 0.28 127
|
| 46 |
+
10 0.42 0.37 0.39 220
|
| 47 |
+
11 0.48 0.40 0.44 84
|
| 48 |
+
12 0.71 0.40 0.51 30
|
| 49 |
+
13 0.48 0.39 0.43 84
|
| 50 |
+
14 0.59 0.70 0.64 74
|
| 51 |
+
15 0.84 0.83 0.83 288
|
| 52 |
+
16 0.00 0.00 0.00 6
|
| 53 |
+
17 0.52 0.56 0.54 116
|
| 54 |
+
18 0.65 0.82 0.72 169
|
| 55 |
+
19 0.00 0.00 0.00 16
|
| 56 |
+
20 0.56 0.49 0.52 120
|
| 57 |
+
21 0.00 0.00 0.00 8
|
| 58 |
+
22 0.47 0.08 0.14 109
|
| 59 |
+
23 0.00 0.00 0.00 7
|
| 60 |
+
24 0.57 0.74 0.64 46
|
| 61 |
+
25 0.55 0.47 0.51 108
|
| 62 |
+
26 0.42 0.48 0.44 92
|
| 63 |
+
27 0.60 0.71 0.65 1606
|
| 64 |
+
|
| 65 |
+
accuracy 0.58 5427
|
| 66 |
+
macro avg 0.46 0.43 0.44 5427
|
| 67 |
+
weighted avg 0.56 0.58 0.56 5427
|
| 68 |
+
|
| 69 |
+
Test results saved to 'test_results.csv'!
|
| 70 |
+
=======
|
| 71 |
+
PS C:\Users\NAVYA\Documents\moodify> python emotions.py
|
| 72 |
+
2025-02-26 20:38:46.440320: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
| 73 |
+
2025-02-26 20:38:47.658979: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
| 74 |
+
WARNING:tensorflow:From C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.
|
| 75 |
+
|
| 76 |
+
Dataset Columns Before Preprocessing: ['text', 'labels', 'id']
|
| 77 |
+
Map: 100%|█████████████████████████████████████████████████████████████████████████████████████| 43410/43410 [00:22<00:00, 1958.97 examples/s]
|
| 78 |
+
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████| 5426/5426 [00:03<00:00, 1796.32 examples/s]
|
| 79 |
+
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████| 5427/5427 [00:02<00:00, 1936.32 examples/s]
|
| 80 |
+
Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']
|
| 81 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
| 82 |
+
{'eval_loss': 1.414624571800232, 'eval_accuracy': 0.5748249170659786, 'eval_f1': 0.55625264544128, 'eval_runtime': 37.1848, 'eval_samples_per_second': 145.92, 'eval_steps_per_second': 4.572, 'epoch': 1.0}
|
| 83 |
+
{'eval_loss': 1.3568519353866577, 'eval_accuracy': 0.5895687430888316, 'eval_f1': 0.5727110766843768, 'eval_runtime': 38.7582, 'eval_samples_per_second': 139.996, 'eval_steps_per_second': 4.386, 'epoch': 2.0}
|
| 84 |
+
{'train_runtime': 6368.0108, 'train_samples_per_second': 13.634, 'train_steps_per_second': 0.213, 'train_loss': 1.50392983585684, 'epoch': 2.0}
|
| 85 |
+
100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 1356/1356 [1:46:08<00:00, 4.70s/it]
|
| 86 |
+
Training completed!
|
| 87 |
+
Model and tokenizer saved!
|
| 88 |
+
|
| 89 |
+
Evaluating model on test set...
|
| 90 |
+
100%|██████████████████████████████████���████████████████████████████████████████████████████████████████████| 170/170 [00:38<00:00, 4.43it/s]
|
| 91 |
+
|
| 92 |
+
Evaluation Results:
|
| 93 |
+
Test Accuracy: 0.5779
|
| 94 |
+
Test F1 Score: 0.5608
|
| 95 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
| 96 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
| 97 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
| 98 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
| 99 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
| 100 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
| 101 |
+
|
| 102 |
+
Classification Report:
|
| 103 |
+
precision recall f1-score support
|
| 104 |
+
|
| 105 |
+
0 0.65 0.74 0.69 504
|
| 106 |
+
1 0.73 0.86 0.79 252
|
| 107 |
+
2 0.47 0.47 0.47 197
|
| 108 |
+
3 0.32 0.20 0.25 286
|
| 109 |
+
4 0.54 0.35 0.42 318
|
| 110 |
+
5 0.46 0.40 0.43 114
|
| 111 |
+
6 0.47 0.39 0.43 139
|
| 112 |
+
7 0.43 0.61 0.51 233
|
| 113 |
+
8 0.60 0.42 0.49 74
|
| 114 |
+
9 0.38 0.22 0.28 127
|
| 115 |
+
10 0.42 0.37 0.39 220
|
| 116 |
+
11 0.48 0.40 0.44 84
|
| 117 |
+
12 0.71 0.40 0.51 30
|
| 118 |
+
13 0.48 0.39 0.43 84
|
| 119 |
+
14 0.59 0.70 0.64 74
|
| 120 |
+
15 0.84 0.83 0.83 288
|
| 121 |
+
16 0.00 0.00 0.00 6
|
| 122 |
+
17 0.52 0.56 0.54 116
|
| 123 |
+
18 0.65 0.82 0.72 169
|
| 124 |
+
19 0.00 0.00 0.00 16
|
| 125 |
+
20 0.56 0.49 0.52 120
|
| 126 |
+
21 0.00 0.00 0.00 8
|
| 127 |
+
22 0.47 0.08 0.14 109
|
| 128 |
+
23 0.00 0.00 0.00 7
|
| 129 |
+
24 0.57 0.74 0.64 46
|
| 130 |
+
25 0.55 0.47 0.51 108
|
| 131 |
+
26 0.42 0.48 0.44 92
|
| 132 |
+
27 0.60 0.71 0.65 1606
|
| 133 |
+
|
| 134 |
+
accuracy 0.58 5427
|
| 135 |
+
macro avg 0.46 0.43 0.44 5427
|
| 136 |
+
weighted avg 0.56 0.58 0.56 5427
|
| 137 |
+
|
| 138 |
+
Test results saved to 'test_results.csv'!
|
| 139 |
+
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|
| 140 |
+
PS C:\Users\NAVYA\Doc
|
intent_classifier.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
from torch.utils.data import Dataset, DataLoader
|
| 5 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
| 9 |
+
|
| 10 |
+
# Check for CUDA
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
print(device)
|
| 13 |
+
|
| 14 |
+
# Load CLINC-OOS Dataset (Correct Config)
|
| 15 |
+
dataset = load_dataset("clinc_oos", "plus")
|
| 16 |
+
|
| 17 |
+
# Tokenizer
|
| 18 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 19 |
+
|
| 20 |
+
# Preprocess Dataset
|
| 21 |
+
class IntentDataset(Dataset):
|
| 22 |
+
def __init__(self, dataset_split):
|
| 23 |
+
self.texts = dataset_split["text"]
|
| 24 |
+
self.labels = dataset_split["intent"]
|
| 25 |
+
self.label_map = {label: i for i, label in enumerate(set(self.labels))} # Create label mapping
|
| 26 |
+
|
| 27 |
+
def __len__(self):
|
| 28 |
+
return len(self.texts)
|
| 29 |
+
|
| 30 |
+
def __getitem__(self, idx):
|
| 31 |
+
inputs = tokenizer(self.texts[idx], padding="max_length", truncation=True, max_length=64, return_tensors="pt")
|
| 32 |
+
label = self.labels[idx]
|
| 33 |
+
if label not in self.label_map:
|
| 34 |
+
raise ValueError(f"Unexpected label {label} found in dataset") # Debugging step
|
| 35 |
+
return {key: val.squeeze(0) for key, val in inputs.items()}, torch.tensor(self.label_map[label])
|
| 36 |
+
|
| 37 |
+
# Create Dataloaders
|
| 38 |
+
batch_size = 16
|
| 39 |
+
train_dataset = IntentDataset(dataset["train"])
|
| 40 |
+
test_dataset = IntentDataset(dataset["test"])
|
| 41 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
| 42 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size)
|
| 43 |
+
|
| 44 |
+
# Load Pretrained BERT Model
|
| 45 |
+
num_labels = len(set(dataset["train"]["intent"]))
|
| 46 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels).to(device)
|
| 47 |
+
|
| 48 |
+
# Loss & Optimizer
|
| 49 |
+
criterion = nn.CrossEntropyLoss()
|
| 50 |
+
optimizer = optim.AdamW(model.parameters(), lr=2e-5)
|
| 51 |
+
|
| 52 |
+
# Training Loop
|
| 53 |
+
num_epochs = 3
|
| 54 |
+
for epoch in range(num_epochs):
|
| 55 |
+
model.train()
|
| 56 |
+
total_loss = 0
|
| 57 |
+
correct = 0
|
| 58 |
+
total = 0
|
| 59 |
+
|
| 60 |
+
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} Training"):
|
| 61 |
+
inputs, labels = batch
|
| 62 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 63 |
+
labels = labels.to(device)
|
| 64 |
+
|
| 65 |
+
optimizer.zero_grad()
|
| 66 |
+
outputs = model(**inputs).logits
|
| 67 |
+
loss = criterion(outputs, labels)
|
| 68 |
+
loss.backward()
|
| 69 |
+
optimizer.step()
|
| 70 |
+
|
| 71 |
+
total_loss += loss.item()
|
| 72 |
+
correct += (outputs.argmax(dim=1) == labels).sum().item()
|
| 73 |
+
total += labels.size(0)
|
| 74 |
+
|
| 75 |
+
train_accuracy = correct / total
|
| 76 |
+
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss:.4f}, Train Accuracy: {train_accuracy:.4f}")
|
| 77 |
+
|
| 78 |
+
# Evaluation on Test Set
|
| 79 |
+
model.eval()
|
| 80 |
+
all_preds, all_labels = [], []
|
| 81 |
+
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
for batch in tqdm(test_loader, desc="Testing"):
|
| 84 |
+
inputs, labels = batch
|
| 85 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 86 |
+
labels = labels.to(device)
|
| 87 |
+
|
| 88 |
+
outputs = model(**inputs).logits
|
| 89 |
+
preds = outputs.argmax(dim=1)
|
| 90 |
+
|
| 91 |
+
all_preds.extend(preds.cpu().numpy())
|
| 92 |
+
all_labels.extend(labels.cpu().numpy())
|
| 93 |
+
|
| 94 |
+
# Compute Metrics
|
| 95 |
+
accuracy = accuracy_score(all_labels, all_preds)
|
| 96 |
+
precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="weighted")
|
| 97 |
+
|
| 98 |
+
print(f"Test Accuracy: {accuracy:.4f}")
|
| 99 |
+
print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}")
|
| 100 |
+
|
| 101 |
+
# Save Model
|
| 102 |
+
torch.save(model.state_dict(), "intent_classifier.pth")
|
intent_graphs.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import seaborn as sns
|
| 5 |
+
from sklearn.metrics import confusion_matrix, classification_report, precision_recall_curve
|
| 6 |
+
from sklearn.preprocessing import label_binarize
|
| 7 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
|
| 10 |
+
# Check for CUDA
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
|
| 13 |
+
# Load dataset
|
| 14 |
+
dataset = load_dataset("clinc_oos", "plus")
|
| 15 |
+
label_names = dataset["train"].features["intent"].names # Ensure correct order
|
| 16 |
+
|
| 17 |
+
# Load model
|
| 18 |
+
num_labels = len(label_names)
|
| 19 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels)
|
| 20 |
+
model.load_state_dict(torch.load("intent_classifier.pth", map_location=device))
|
| 21 |
+
model.to(device)
|
| 22 |
+
model.eval()
|
| 23 |
+
|
| 24 |
+
# Load tokenizer
|
| 25 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 26 |
+
|
| 27 |
+
# Prepare data
|
| 28 |
+
true_labels = []
|
| 29 |
+
pred_labels = []
|
| 30 |
+
all_probs = []
|
| 31 |
+
|
| 32 |
+
for example in dataset["test"]:
|
| 33 |
+
sentence = example["text"]
|
| 34 |
+
true_label = example["intent"]
|
| 35 |
+
|
| 36 |
+
# Tokenize
|
| 37 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
| 38 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 39 |
+
|
| 40 |
+
# Predict
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
outputs = model(**inputs)
|
| 43 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 44 |
+
predicted_class = np.argmax(probs)
|
| 45 |
+
|
| 46 |
+
# Store results
|
| 47 |
+
true_labels.append(true_label)
|
| 48 |
+
pred_labels.append(predicted_class)
|
| 49 |
+
all_probs.append(probs)
|
| 50 |
+
|
| 51 |
+
# Convert to numpy arrays
|
| 52 |
+
true_labels = np.array(true_labels)
|
| 53 |
+
pred_labels = np.array(pred_labels)
|
| 54 |
+
all_probs = np.array(all_probs)
|
| 55 |
+
|
| 56 |
+
# Compute confusion matrix
|
| 57 |
+
conf_matrix = confusion_matrix(true_labels, pred_labels)
|
| 58 |
+
|
| 59 |
+
# Plot confusion matrix
|
| 60 |
+
plt.figure(figsize=(12, 10))
|
| 61 |
+
sns.heatmap(conf_matrix, annot=False, fmt="d", cmap="Blues")
|
| 62 |
+
plt.xlabel("Predicted Label")
|
| 63 |
+
plt.ylabel("True Label")
|
| 64 |
+
plt.title("Confusion Matrix for Intent Classification")
|
| 65 |
+
plt.savefig("confusion_matrix.png", dpi=300, bbox_inches="tight")
|
| 66 |
+
plt.close()
|
| 67 |
+
|
| 68 |
+
print("Confusion matrix saved as confusion_matrix.png")
|
| 69 |
+
|
| 70 |
+
# --- Multi-Class Precision-Recall Curve ---
|
| 71 |
+
# Binarize true labels for multi-class PR calculation
|
| 72 |
+
true_labels_bin = label_binarize(true_labels, classes=np.arange(num_labels))
|
| 73 |
+
|
| 74 |
+
# Plot Precision-Recall Curve for multiple classes
|
| 75 |
+
plt.figure(figsize=(10, 8))
|
| 76 |
+
for i in range(num_labels):
|
| 77 |
+
precision, recall, _ = precision_recall_curve(true_labels_bin[:, i], all_probs[:, i])
|
| 78 |
+
plt.plot(recall, precision, lw=1, alpha=0.7, label=f"Class {i}: {label_names[i]}")
|
| 79 |
+
|
| 80 |
+
plt.xlabel("Recall")
|
| 81 |
+
plt.ylabel("Precision")
|
| 82 |
+
plt.title("Multi-Class Precision-Recall Curve")
|
| 83 |
+
plt.legend(loc="best", fontsize=6, ncol=2, frameon=True)
|
| 84 |
+
plt.grid(True)
|
| 85 |
+
plt.savefig("precision_recall_curve.png", dpi=300, bbox_inches="tight")
|
| 86 |
+
plt.close()
|
| 87 |
+
|
| 88 |
+
print("Precision-Recall curve saved as precision_recall_curve.png")
|
intent_train.txt
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PS C:\Users\NAVYA\Documents\moodify> python intent_classifier.py
|
| 2 |
+
2025-02-26 00:12:11.737923: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
| 3 |
+
2025-02-26 00:12:13.232626: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
| 4 |
+
cuda
|
| 5 |
+
train-00000-of-00001.parquet: 100%|████████████████████████████████████████████████████████████████████████| 312k/312k [00:00<00:00, 2.83MB/s]
|
| 6 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\huggingface_hub\file_download.py:142: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\Users\NAVYA\.cache\huggingface\hub\datasets--clinc_oos. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.
|
| 7 |
+
To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
|
| 8 |
+
warnings.warn(message)
|
| 9 |
+
validation-00000-of-00001.parquet: 100%|█████████████████████████████████████████████████████████████████| 77.8k/77.8k [00:00<00:00, 4.63MB/s]
|
| 10 |
+
test-00000-of-00001.parquet: 100%|█████████████████████████████████████████████████████████████████████████| 136k/136k [00:00<00:00, 4.81MB/s]
|
| 11 |
+
Generating train split: 100%|████████████████████████████████████████████████████████████████| 15250/15250 [00:00<00:00, 210143.07 examples/s]
|
| 12 |
+
Generating validation split: 100%|█████████████████████████████████████████████████████████████| 3100/3100 [00:00<00:00, 233598.79 examples/s]
|
| 13 |
+
Generating test split: 100%|███████████████████████████████████████████████████████████████████| 5500/5500 [00:00<00:00, 288149.49 examples/s]
|
| 14 |
+
Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']
|
| 15 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
| 16 |
+
Epoch 1/3 Training: 100%|███████████████████████████████████████████████████████████████████████████████████| 954/954 [04:26<00:00, 3.57it/s]
|
| 17 |
+
Epoch 1/3, Loss: 3449.6031, Train Accuracy: 0.4677
|
| 18 |
+
Epoch 2/3 Training: 100%|███████████████████████████████████████████████████████████████████████████████████| 954/954 [04:25<00:00, 3.60it/s]
|
| 19 |
+
Epoch 2/3, Loss: 1115.7661, Train Accuracy: 0.9301
|
| 20 |
+
Epoch 3/3 Training: 100%|███████████████████████████████████████████████████████████████████████████████████| 954/954 [04:24<00:00, 3.61it/s]
|
| 21 |
+
Epoch 3/3, Loss: 324.9103, Train Accuracy: 0.9817
|
| 22 |
+
Testing: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 344/344 [00:27<00:00, 12.57it/s]
|
| 23 |
+
Test Accuracy: 0.8800
|
| 24 |
+
Precision: 0.8978, Recall: 0.8800, F1-score: 0.8741
|
| 25 |
+
PS C:\Users\NAVYA\Documents\moodify>
|
model.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import BertTokenizer, BertModel
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
from sklearn.model_selection import train_test_split
|
| 8 |
+
from torch.utils.data import Dataset, DataLoader
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
from sklearn.metrics import accuracy_score, f1_score
|
| 11 |
+
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
|
| 14 |
+
dataset = load_dataset("go_emotions")
|
| 15 |
+
|
| 16 |
+
# Extract text and labels
|
| 17 |
+
texts = dataset["train"]["text"][:20000] # Increased dataset size
|
| 18 |
+
labels = dataset["train"]["labels"][:20000] # Increased dataset size
|
| 19 |
+
|
| 20 |
+
# Convert labels to categorical
|
| 21 |
+
def fix_labels(labels):
|
| 22 |
+
labels = [max(label) if label else 0 for label in labels] # Convert multi-label to single-label
|
| 23 |
+
return torch.tensor(labels, dtype=torch.long)
|
| 24 |
+
|
| 25 |
+
labels = fix_labels(labels)
|
| 26 |
+
|
| 27 |
+
# Split dataset
|
| 28 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels, test_size=0.2, random_state=42)
|
| 29 |
+
|
| 30 |
+
# Tokenizer
|
| 31 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 32 |
+
|
| 33 |
+
# Tokenize text
|
| 34 |
+
def tokenize(texts):
|
| 35 |
+
return tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
| 36 |
+
|
| 37 |
+
train_encodings = tokenize(train_texts)
|
| 38 |
+
val_encodings = tokenize(val_texts)
|
| 39 |
+
train_encodings = {key: val.to(device) for key, val in train_encodings.items()}
|
| 40 |
+
val_encodings = {key: val.to(device) for key, val in val_encodings.items()}
|
| 41 |
+
|
| 42 |
+
class EmotionDataset(Dataset):
|
| 43 |
+
def __init__(self, encodings, labels):
|
| 44 |
+
self.encodings = encodings
|
| 45 |
+
self.labels = labels
|
| 46 |
+
|
| 47 |
+
def __len__(self):
|
| 48 |
+
return len(self.labels)
|
| 49 |
+
|
| 50 |
+
def __getitem__(self, idx):
|
| 51 |
+
item = {key: val[idx] for key, val in self.encodings.items()}
|
| 52 |
+
item["labels"] = self.labels[idx]
|
| 53 |
+
return item
|
| 54 |
+
|
| 55 |
+
train_dataset = EmotionDataset(train_encodings, train_labels)
|
| 56 |
+
val_dataset = EmotionDataset(val_encodings, val_labels)
|
| 57 |
+
|
| 58 |
+
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
| 59 |
+
val_loader = DataLoader(val_dataset, batch_size=16)
|
| 60 |
+
|
| 61 |
+
class BertGRUClassifier(nn.Module):
|
| 62 |
+
def __init__(self, bert_model="bert-base-uncased", hidden_dim=128, num_classes=28):
|
| 63 |
+
super(BertGRUClassifier, self).__init__()
|
| 64 |
+
self.bert = BertModel.from_pretrained(bert_model)
|
| 65 |
+
self.gru = nn.GRU(self.bert.config.hidden_size, hidden_dim, batch_first=True)
|
| 66 |
+
self.dropout = nn.Dropout(0.3) # Added dropout layer
|
| 67 |
+
self.fc = nn.Linear(hidden_dim, num_classes)
|
| 68 |
+
|
| 69 |
+
def forward(self, input_ids, attention_mask):
|
| 70 |
+
with torch.no_grad():
|
| 71 |
+
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
| 72 |
+
gru_output, _ = self.gru(bert_output.last_hidden_state)
|
| 73 |
+
output = self.fc(self.dropout(gru_output[:, -1, :])) # Apply dropout
|
| 74 |
+
return output
|
| 75 |
+
|
| 76 |
+
model = BertGRUClassifier()
|
| 77 |
+
model.to(device)
|
| 78 |
+
|
| 79 |
+
criterion = nn.CrossEntropyLoss()
|
| 80 |
+
optimizer = optim.Adam(model.parameters(), lr=2e-5)
|
| 81 |
+
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.1) # Added learning rate scheduler
|
| 82 |
+
|
| 83 |
+
def evaluate_model(model, data_loader):
|
| 84 |
+
model.eval()
|
| 85 |
+
predictions, true_labels = [], []
|
| 86 |
+
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
for batch in data_loader:
|
| 89 |
+
input_ids = batch["input_ids"].to(device)
|
| 90 |
+
attention_mask = batch["attention_mask"].to(device)
|
| 91 |
+
labels = batch["labels"].to(device)
|
| 92 |
+
|
| 93 |
+
outputs = model(input_ids, attention_mask)
|
| 94 |
+
preds = torch.argmax(outputs, dim=1).cpu().numpy()
|
| 95 |
+
predictions.extend(preds)
|
| 96 |
+
true_labels.extend(labels.cpu().numpy())
|
| 97 |
+
|
| 98 |
+
acc = accuracy_score(true_labels, predictions)
|
| 99 |
+
f1 = f1_score(true_labels, predictions, average='weighted')
|
| 100 |
+
return acc, f1
|
| 101 |
+
|
| 102 |
+
def train_model(model, train_loader, val_loader, epochs=10): # Increased number of epochs
|
| 103 |
+
for epoch in range(epochs):
|
| 104 |
+
model.train()
|
| 105 |
+
total_loss = 0
|
| 106 |
+
|
| 107 |
+
for batch in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}"):
|
| 108 |
+
input_ids = batch["input_ids"].to(device)
|
| 109 |
+
attention_mask = batch["attention_mask"].to(device)
|
| 110 |
+
labels = batch["labels"].to(device)
|
| 111 |
+
|
| 112 |
+
optimizer.zero_grad()
|
| 113 |
+
outputs = model(input_ids, attention_mask)
|
| 114 |
+
loss = criterion(outputs, labels)
|
| 115 |
+
loss.backward()
|
| 116 |
+
optimizer.step()
|
| 117 |
+
|
| 118 |
+
total_loss += loss.item()
|
| 119 |
+
|
| 120 |
+
scheduler.step() # Step the scheduler
|
| 121 |
+
|
| 122 |
+
train_acc, train_f1 = evaluate_model(model, train_loader)
|
| 123 |
+
val_acc, val_f1 = evaluate_model(model, val_loader)
|
| 124 |
+
print(f"Epoch {epoch + 1}, Loss: {total_loss / len(train_loader)}, Train Acc: {train_acc:.4f}, Train F1: {train_f1:.4f}, Val Acc: {val_acc:.4f}, Val F1: {val_f1:.4f}")
|
| 125 |
+
|
| 126 |
+
# Save the model after each epoch
|
| 127 |
+
torch.save(model.state_dict(), f"model_epoch_{epoch + 1}.pth")
|
| 128 |
+
|
| 129 |
+
train_model(model, train_loader, val_loader)
|
| 130 |
+
|
| 131 |
+
# Assuming you have a test dataset
|
| 132 |
+
test_texts = dataset["test"]["text"]
|
| 133 |
+
test_labels = fix_labels(dataset["test"]["labels"])
|
| 134 |
+
test_encodings = tokenize(test_texts)
|
| 135 |
+
test_encodings = {key: val.to(device) for key, val in test_encodings.items()}
|
| 136 |
+
test_dataset = EmotionDataset(test_encodings, test_labels)
|
| 137 |
+
test_loader = DataLoader(test_dataset, batch_size=16)
|
| 138 |
+
|
| 139 |
+
test_acc, test_f1 = evaluate_model(model, test_loader)
|
| 140 |
+
print(f"Test Accuracy: {test_acc:.4f}, Test F1 Score: {test_f1:.4f}")
|
mood_classifier.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from torch.utils.data import DataLoader, Dataset, random_split
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
| 9 |
+
|
| 10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
|
| 12 |
+
# Load GoEmotions dataset
|
| 13 |
+
dataset = load_dataset("go_emotions", split="train")
|
| 14 |
+
dataset = dataset.map(lambda x: {"label": x["labels"][0]}) # Convert multi-label to single-label
|
| 15 |
+
|
| 16 |
+
labels = list(set(dataset["label"])) # Unique labels
|
| 17 |
+
num_labels = len(labels)
|
| 18 |
+
|
| 19 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 20 |
+
|
| 21 |
+
class MoodDataset(Dataset):
|
| 22 |
+
def __init__(self, texts, labels):
|
| 23 |
+
self.texts = texts
|
| 24 |
+
self.labels = labels
|
| 25 |
+
|
| 26 |
+
def __len__(self):
|
| 27 |
+
return len(self.texts)
|
| 28 |
+
|
| 29 |
+
def __getitem__(self, idx):
|
| 30 |
+
inputs = tokenizer(self.texts[idx], return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
| 31 |
+
return {key: val.squeeze(0) for key, val in inputs.items()}, torch.tensor(labels.index(self.labels[idx]))
|
| 32 |
+
|
| 33 |
+
dataset = MoodDataset(dataset["text"], dataset["label"])
|
| 34 |
+
train_size = int(0.8 * len(dataset))
|
| 35 |
+
train_set, test_set = random_split(dataset, [train_size, len(dataset) - train_size])
|
| 36 |
+
|
| 37 |
+
train_loader = DataLoader(train_set, batch_size=32, shuffle=True)
|
| 38 |
+
test_loader = DataLoader(test_set, batch_size=32)
|
| 39 |
+
|
| 40 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels).to(device)
|
| 41 |
+
optimizer = optim.AdamW(model.parameters(), lr=2e-5)
|
| 42 |
+
criterion = nn.CrossEntropyLoss()
|
| 43 |
+
|
| 44 |
+
num_epochs = 3
|
| 45 |
+
for epoch in range(num_epochs):
|
| 46 |
+
model.train()
|
| 47 |
+
epoch_loss, correct, total = 0, 0, 0
|
| 48 |
+
preds, labels_list = [], []
|
| 49 |
+
|
| 50 |
+
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} Training"):
|
| 51 |
+
optimizer.zero_grad()
|
| 52 |
+
inputs = {key: val.to(device) for key, val in batch[0].items()}
|
| 53 |
+
labels = batch[1].to(device)
|
| 54 |
+
|
| 55 |
+
outputs = model(**inputs).logits
|
| 56 |
+
loss = criterion(outputs, labels)
|
| 57 |
+
|
| 58 |
+
loss.backward()
|
| 59 |
+
optimizer.step()
|
| 60 |
+
|
| 61 |
+
epoch_loss += loss.item()
|
| 62 |
+
correct += (outputs.argmax(dim=1) == labels).sum().item()
|
| 63 |
+
total += labels.size(0)
|
| 64 |
+
|
| 65 |
+
preds.extend(outputs.argmax(dim=1).cpu().numpy())
|
| 66 |
+
labels_list.extend(labels.cpu().numpy())
|
| 67 |
+
|
| 68 |
+
train_acc = accuracy_score(labels_list, preds)
|
| 69 |
+
precision, recall, f1, _ = precision_recall_fscore_support(labels_list, preds, average="weighted")
|
| 70 |
+
|
| 71 |
+
print(f"Epoch {epoch+1}: Loss: {epoch_loss:.4f}, Train Acc: {train_acc:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}")
|
| 72 |
+
|
| 73 |
+
# **Evaluate on Test Set**
|
| 74 |
+
model.eval()
|
| 75 |
+
test_preds, test_labels = [], []
|
| 76 |
+
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
for batch in tqdm(test_loader, desc="Evaluating on Test Set"):
|
| 79 |
+
inputs = {key: val.to(device) for key, val in batch[0].items()}
|
| 80 |
+
labels = batch[1].to(device)
|
| 81 |
+
|
| 82 |
+
outputs = model(**inputs).logits
|
| 83 |
+
test_preds.extend(outputs.argmax(dim=1).cpu().numpy())
|
| 84 |
+
test_labels.extend(labels.cpu().numpy())
|
| 85 |
+
|
| 86 |
+
test_acc = accuracy_score(test_labels, test_preds)
|
| 87 |
+
precision, recall, f1, _ = precision_recall_fscore_support(test_labels, test_preds, average="weighted")
|
| 88 |
+
|
| 89 |
+
print(f"Test Accuracy: {test_acc:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}")
|
| 90 |
+
|
| 91 |
+
# Save model
|
| 92 |
+
model.save_pretrained("mood_classifier")
|
precision_recall_curve.png
ADDED
|
Git LFS Details
|
predict_emotions.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import BertTokenizer, DistilBertForSequenceClassification
|
| 3 |
+
|
| 4 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 5 |
+
|
| 6 |
+
# Load the trained model and tokenizer
|
| 7 |
+
try:
|
| 8 |
+
model = DistilBertForSequenceClassification.from_pretrained("./saved_model")
|
| 9 |
+
tokenizer = BertTokenizer.from_pretrained("./saved_model")
|
| 10 |
+
except Exception as e:
|
| 11 |
+
print(f"Error loading model or tokenizer: {e}")
|
| 12 |
+
exit()
|
| 13 |
+
|
| 14 |
+
model.to(device)
|
| 15 |
+
model.eval()
|
| 16 |
+
|
| 17 |
+
# Define the sentences
|
| 18 |
+
sentences = [
|
| 19 |
+
"I am so happy today!",
|
| 20 |
+
"This is the worst day ever.",
|
| 21 |
+
"I feel so loved and appreciated.",
|
| 22 |
+
"I am really angry right now.",
|
| 23 |
+
"I am so done cant take this anymore",
|
| 24 |
+
"i have to finish this report by tomorrow but so tired",
|
| 25 |
+
"let's do it",
|
| 26 |
+
"i have got this,, yayyyy",
|
| 27 |
+
"energetic",
|
| 28 |
+
"worst tired lazy",
|
| 29 |
+
"I am feeling very sad and lonely."
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
# Define the label names
|
| 33 |
+
label_names = ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"]
|
| 34 |
+
|
| 35 |
+
def predict_emotion(sentence):
|
| 36 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
| 37 |
+
inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"}
|
| 38 |
+
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
outputs = model(**inputs)
|
| 41 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 42 |
+
|
| 43 |
+
return predicted_class, label_names[predicted_class]
|
| 44 |
+
|
| 45 |
+
# Predict emotions for the sentences
|
| 46 |
+
for sentence in sentences:
|
| 47 |
+
predicted_emotion, predicted_label_name = predict_emotion(sentence)
|
| 48 |
+
print(f"Predicted emotion for '{sentence}': {predicted_emotion} ({predicted_label_name})")
|
predict_intent.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from collections import Counter
|
| 5 |
+
|
| 6 |
+
# Check for CUDA
|
| 7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
+
|
| 9 |
+
# Load dataset and get correct label names
|
| 10 |
+
dataset = load_dataset("clinc_oos", "plus")
|
| 11 |
+
label_names = dataset["train"].features["intent"].names # Ensure correct order
|
| 12 |
+
|
| 13 |
+
# Debugging check
|
| 14 |
+
print(f"Total labels: {len(label_names)}") # Should print 151
|
| 15 |
+
print("Sample labels:", label_names[:10]) # Print first 10 labels
|
| 16 |
+
|
| 17 |
+
# Load the trained model
|
| 18 |
+
num_labels = len(label_names) # Should be 151
|
| 19 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels)
|
| 20 |
+
model.load_state_dict(torch.load("intent_classifier.pth", map_location=device))
|
| 21 |
+
model.to(device)
|
| 22 |
+
model.eval()
|
| 23 |
+
|
| 24 |
+
# Load tokenizer
|
| 25 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 26 |
+
|
| 27 |
+
def predict_intent(sentence):
|
| 28 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
| 29 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 30 |
+
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
outputs = model(**inputs)
|
| 33 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 34 |
+
|
| 35 |
+
if predicted_class >= len(label_names): # Prevent out-of-range errors
|
| 36 |
+
print(f"Warning: Predicted class {predicted_class} is out of range!")
|
| 37 |
+
return predicted_class, "Unknown Label"
|
| 38 |
+
|
| 39 |
+
return predicted_class, label_names[predicted_class]
|
| 40 |
+
|
| 41 |
+
# Example usage
|
| 42 |
+
sentence = "I need to attend a meeting but so tired but important"
|
| 43 |
+
predicted_intent, predicted_label_name = predict_intent(sentence)
|
| 44 |
+
print(f"Predicted intent for '{sentence}': {predicted_intent} ({predicted_label_name})")
|
| 45 |
+
|
| 46 |
+
# # Fix: Count labels correctly from dataset["train"]
|
| 47 |
+
# label_counts = Counter([label_names[label] for label in dataset["train"]["intent"]])
|
| 48 |
+
# print("Label distribution:", label_counts) # Print top 10 most common labels
|
requirements.txt
CHANGED
|
@@ -1,3 +1,13 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
together
|
| 2 |
+
python-dotenv
|
| 3 |
+
torch
|
| 4 |
+
transformers==4.35.2
|
| 5 |
+
tokenizers==0.15.0
|
| 6 |
+
gdown
|
| 7 |
+
streamlit
|
| 8 |
+
pandas
|
| 9 |
+
|
| 10 |
+
transformers==4.35.2
|
| 11 |
+
tokenizers==0.15.0
|
| 12 |
+
|
| 13 |
+
|
task.py
ADDED
|
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from together import Together
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, BertTokenizer,DistilBertTokenizer, BertForSequenceClassification, DistilBertForSequenceClassification
|
| 7 |
+
from datetime import datetime, timedelta
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from task_css import get_custom_css # Import the custom CSS function
|
| 10 |
+
import gdown
|
| 11 |
+
|
| 12 |
+
# Set environment variable for offline mode
|
| 13 |
+
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
| 14 |
+
|
| 15 |
+
# Load environment variables
|
| 16 |
+
load_dotenv()
|
| 17 |
+
|
| 18 |
+
# Together AI Client with API key from environment variable
|
| 19 |
+
client = Together(api_key=os.getenv("TOGETHER_API_KEY", ""))
|
| 20 |
+
|
| 21 |
+
# Set device
|
| 22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
|
| 24 |
+
# Load Intent Model
|
| 25 |
+
intent_model_path = "intent_classifier.pth"
|
| 26 |
+
# Extract file ID from Google Drive URL
|
| 27 |
+
file_id = "1_GDGvV3MVvBguIsjMyDLg3RxUV_gnFAY"
|
| 28 |
+
num_intent_labels = 151 # Moved this up before model creation
|
| 29 |
+
|
| 30 |
+
# Load Emotion Model
|
| 31 |
+
emotions_model_path = "./saved_model"
|
| 32 |
+
emotions_folder_id = "1gYWkbC_XBw_GZjsfwXvubHFil4BCq_gH"
|
| 33 |
+
|
| 34 |
+
# Add new pretrained model ID
|
| 35 |
+
pretrained_folder_id = "13t_EB2LFhRIwb3dkKDtA0O5NXXZBoG-j"
|
| 36 |
+
|
| 37 |
+
# Initialize Session State
|
| 38 |
+
if "is_ready" not in st.session_state:
|
| 39 |
+
st.session_state.is_ready = False
|
| 40 |
+
st.session_state.models = {} # Initialize models dict immediately
|
| 41 |
+
st.session_state.tasks = []
|
| 42 |
+
st.session_state.task_counter = 0
|
| 43 |
+
st.session_state.overall_emotion = None
|
| 44 |
+
st.session_state.overall_emotion_label = "Neutral"
|
| 45 |
+
|
| 46 |
+
# Page Configuration first
|
| 47 |
+
st.set_page_config(
|
| 48 |
+
page_title="🚀 AI Productivity Assistant",
|
| 49 |
+
layout="wide",
|
| 50 |
+
page_icon="🎯"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Custom CSS for enhanced styling
|
| 54 |
+
st.markdown(get_custom_css(), unsafe_allow_html=True)
|
| 55 |
+
|
| 56 |
+
# Show loading screen if models aren't ready
|
| 57 |
+
if not st.session_state.is_ready:
|
| 58 |
+
st.markdown(
|
| 59 |
+
"""
|
| 60 |
+
<div class="loading-container" style="text-align: center; padding: 50px;">
|
| 61 |
+
<div class="loading-spinner"></div>
|
| 62 |
+
<h2>Setting up your AI assistant...</h2>
|
| 63 |
+
<p>This may take a minute. We're downloading the required models.</p>
|
| 64 |
+
</div>
|
| 65 |
+
""",
|
| 66 |
+
unsafe_allow_html=True
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Load models here
|
| 70 |
+
try:
|
| 71 |
+
# First download pretrained models
|
| 72 |
+
if not os.path.exists("pretrained_models"):
|
| 73 |
+
with st.status("Downloading base models...", expanded=True) as status:
|
| 74 |
+
os.makedirs("pretrained_models", exist_ok=True)
|
| 75 |
+
gdown.download_folder(
|
| 76 |
+
f"https://drive.google.com/drive/folders/{pretrained_folder_id}",
|
| 77 |
+
output="pretrained_models",
|
| 78 |
+
quiet=False
|
| 79 |
+
)
|
| 80 |
+
status.update(label="Base models downloaded!", state="complete")
|
| 81 |
+
|
| 82 |
+
# Intent Model Loading
|
| 83 |
+
if not os.path.exists(intent_model_path):
|
| 84 |
+
with st.status("Downloading intent model...", expanded=True) as status:
|
| 85 |
+
output = gdown.download(
|
| 86 |
+
f"https://drive.google.com/uc?id={file_id}",
|
| 87 |
+
intent_model_path,
|
| 88 |
+
quiet=False
|
| 89 |
+
)
|
| 90 |
+
status.update(label="Intent model downloaded!", state="complete")
|
| 91 |
+
|
| 92 |
+
# Emotion Model Loading
|
| 93 |
+
if not os.path.exists(emotions_model_path):
|
| 94 |
+
with st.status("Downloading emotion model...", expanded=True) as status:
|
| 95 |
+
os.makedirs(emotions_model_path, exist_ok=True)
|
| 96 |
+
gdown.download_folder(
|
| 97 |
+
f"https://drive.google.com/drive/folders/{emotions_folder_id}",
|
| 98 |
+
output=emotions_model_path,
|
| 99 |
+
quiet=False
|
| 100 |
+
)
|
| 101 |
+
status.update(label="Emotion model downloaded!", state="complete")
|
| 102 |
+
|
| 103 |
+
# Load and store intent model
|
| 104 |
+
intent_model = AutoModelForSequenceClassification.from_pretrained(
|
| 105 |
+
"pretrained_models/bert-base-uncased",
|
| 106 |
+
num_labels=num_intent_labels,
|
| 107 |
+
ignore_mismatched_sizes=True, # Add this parameter
|
| 108 |
+
local_files_only=True
|
| 109 |
+
)
|
| 110 |
+
intent_model.load_state_dict(
|
| 111 |
+
torch.load(intent_model_path, map_location=device, weights_only=True)
|
| 112 |
+
)
|
| 113 |
+
st.session_state.models["intent_model"] = intent_model.to(device).eval()
|
| 114 |
+
st.session_state.models["intent_tokenizer"] = AutoTokenizer.from_pretrained(
|
| 115 |
+
"pretrained_models/bert-base-uncased",
|
| 116 |
+
local_files_only=True
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Load and store emotion model
|
| 120 |
+
emotions_model = AutoModelForSequenceClassification.from_pretrained(
|
| 121 |
+
emotions_model_path,
|
| 122 |
+
ignore_mismatched_sizes=True, # Add this parameter
|
| 123 |
+
local_files_only=True
|
| 124 |
+
)
|
| 125 |
+
st.session_state.models["emotions_model"] = emotions_model.to(device).eval()
|
| 126 |
+
st.session_state.models["emotions_tokenizer"] = AutoTokenizer.from_pretrained(
|
| 127 |
+
emotions_model_path,
|
| 128 |
+
local_files_only=True
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Set ready state
|
| 132 |
+
st.session_state.is_ready = True
|
| 133 |
+
st.rerun()
|
| 134 |
+
|
| 135 |
+
except Exception as e:
|
| 136 |
+
st.error(f"Error loading models: {str(e)}")
|
| 137 |
+
st.stop()
|
| 138 |
+
|
| 139 |
+
# Only show main app if models are ready
|
| 140 |
+
if st.session_state.is_ready:
|
| 141 |
+
# Title with custom styling
|
| 142 |
+
st.markdown('<div class="main-header">🎯 MoodifyTask: AI Task Prioritization & Wellness Assistant</div>', unsafe_allow_html=True)
|
| 143 |
+
|
| 144 |
+
# Emotion Labels
|
| 145 |
+
emotion_label_names = [
|
| 146 |
+
"admiration", "amusement", "anger", "annoyance", "approval",
|
| 147 |
+
"caring", "confusion", "curiosity", "desire", "disappointment",
|
| 148 |
+
"disapproval", "disgust", "embarrassment", "excitement", "fear",
|
| 149 |
+
"gratitude", "grief", "joy", "love", "nervousness",
|
| 150 |
+
"optimism", "pride", "realization", "relief", "remorse",
|
| 151 |
+
"sadness", "surprise", "neutral"
|
| 152 |
+
]
|
| 153 |
+
|
| 154 |
+
# Emotion Categories
|
| 155 |
+
positive_emotions = ["admiration", "amusement", "approval", "caring", "curiosity", "excitement", "gratitude", "joy", "love", "optimism", "pride", "relief", "surprise"]
|
| 156 |
+
negative_emotions = ["anger", "annoyance", "disappointment", "disapproval", "disgust", "embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"]
|
| 157 |
+
neutral_emotions = ["realization", "neutral"]
|
| 158 |
+
|
| 159 |
+
# Predict Intent
|
| 160 |
+
def predict_intent(sentence):
|
| 161 |
+
inputs = st.session_state.models["intent_tokenizer"](
|
| 162 |
+
sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128
|
| 163 |
+
)
|
| 164 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 165 |
+
with torch.no_grad():
|
| 166 |
+
outputs = st.session_state.models["intent_model"](**inputs)
|
| 167 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 168 |
+
|
| 169 |
+
# Mapping Intent IDs to Priorities (0-150)
|
| 170 |
+
PRIORITY_MAPPING = {
|
| 171 |
+
5: [8, 35, 42, 74, 97, 110, 118, 120, 124, 136], # freeze_account, report_lost_card, flight_status, report_fraud, credit_limit, lost_luggage, dispute_charge, overdraft, cancel_reservation, emergency
|
| 172 |
+
4: [14, 15, 19, 20, 39, 47, 48, 49, 50, 69, 70, 71, 72], # bill_balance, bill_due, exchange_rate, credit_score, interest_rate, insurance, medical_expenses, appointment_schedule, meeting_schedule, dentist_appointment, doctor_appointment, prescription_refill, pharmacy_hours
|
| 173 |
+
3: [33, 34, 41, 51, 56, 57, 62, 66, 77, 78, 85], # hotel_reservation, car_rental, restaurant_reservation, tracking_package, check_in, check_out, traffic_update, directions, smart_home_on, smart_home_off, weather_forecast
|
| 174 |
+
2: [0, 1, 3, 6, 9, 13, 16, 17, 21, 25, 27, 28, 36, 40, 45, 52, 61], # restaurant_reviews, shopping_list, what_song, schedule_meeting, translate, play_music, book_hotel, book_flight, gas_prices, exchange_rate, movie_showtimes, recipe, cancel_flight, book_reservation, order_food, car_services, joke
|
| 175 |
+
1: [2, 4, 5, 7, 10, 11, 12, 18, 22, 23, 24, 26, 30, 31, 32, 37, 38, 43, 44, 46, 53, 54, 55, 58, 59, 60, 63, 64, 65, 67, 68, 73]
|
| 176 |
+
# tell_joke, fun_fact, trivia, horoscope, dog_fact, cat_fact, define_word, stock_price, sports_update, lottery_results, currency_conversion, holiday_list, language_learning, random_fact, poem, quote, daily_horoscope, joke_request, music_recommendation, podcast_recommendation, celebrity_gossip, movie_recommendation, TV_show_recommendation, book_recommendation, game_recommendation, radio_recommendation, trivia_game, riddle, name_meaning, birthday_reminder, anniversary_reminder, affirmations
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
# Find the priority based on predicted_class
|
| 180 |
+
predicted_intent_score = next((priority for priority, ids in PRIORITY_MAPPING.items() if predicted_class in ids), 1) # Default to 1 if not found
|
| 181 |
+
|
| 182 |
+
return predicted_intent_score
|
| 183 |
+
|
| 184 |
+
# Emotion to Numeric Score Mapping
|
| 185 |
+
EMOTION_MAPPING = {
|
| 186 |
+
"admiration": 4, "amusement": 3, "anger": 5, "annoyance": 4, "approval": 3,
|
| 187 |
+
"caring": 4, "confusion": 3, "curiosity": 3, "desire": 4, "disappointment": 4,
|
| 188 |
+
"disapproval": 4, "disgust": 5, "embarrassment": 4, "excitement": 5, "fear": 5,
|
| 189 |
+
"gratitude": 3, "grief": 5, "joy": 5, "love": 5, "nervousness": 4,
|
| 190 |
+
"optimism": 4, "pride": 4, "realization": 3, "relief": 3, "remorse": 4,
|
| 191 |
+
"sadness": 5, "surprise": 3, "neutral": 3
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
# Function to get numeric emotion score
|
| 195 |
+
def get_emotion_score(emotion):
|
| 196 |
+
return EMOTION_MAPPING.get(emotion.lower(), 3) # Default to 3 if not found
|
| 197 |
+
# Predict Emotion
|
| 198 |
+
def predict_emotion(sentence):
|
| 199 |
+
if not sentence.strip():
|
| 200 |
+
return 3, "neutral"
|
| 201 |
+
# Ensure the input is a full sentence
|
| 202 |
+
if len(sentence.split()) == 1:
|
| 203 |
+
sentence = f"I feel {sentence}"
|
| 204 |
+
inputs = st.session_state.models["emotions_tokenizer"](
|
| 205 |
+
sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128
|
| 206 |
+
)
|
| 207 |
+
inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"}
|
| 208 |
+
|
| 209 |
+
with torch.no_grad():
|
| 210 |
+
outputs = st.session_state.models["emotions_model"](**inputs)
|
| 211 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 212 |
+
|
| 213 |
+
detected_emotion = emotion_label_names[predicted_class]
|
| 214 |
+
|
| 215 |
+
# Manually adjust for stress/pressure-related words
|
| 216 |
+
stress_keywords = ["stress", "stressed", "overwhelmed", "pressure", "tense", "burnout"]
|
| 217 |
+
if any(word in sentence.lower() for word in stress_keywords):
|
| 218 |
+
if detected_emotion not in ["sadness", "nervousness"]:
|
| 219 |
+
detected_emotion = "nervousness" # Change to "sadness" if you prefer
|
| 220 |
+
|
| 221 |
+
emotion_score = get_emotion_score(detected_emotion)
|
| 222 |
+
if emotion_score is None:
|
| 223 |
+
emotion_score = 3 # Default neutral score
|
| 224 |
+
|
| 225 |
+
return emotion_score, detected_emotion
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# Get Emotion Category
|
| 229 |
+
def get_emotion_category(emotion):
|
| 230 |
+
if emotion in positive_emotions:
|
| 231 |
+
return "positive"
|
| 232 |
+
elif emotion in negative_emotions:
|
| 233 |
+
return "negative"
|
| 234 |
+
else:
|
| 235 |
+
return "neutral"
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def normalize_priority(priority, min_value=0, max_value=10):
|
| 239 |
+
return (priority - min_value) / (max_value - min_value) # Normalize between 0-1
|
| 240 |
+
|
| 241 |
+
# Calculate Task Priority
|
| 242 |
+
def calculate_priority_score(predicted_intent_score,emotion_score, emotion, time_remaining, complexity, emotion_category):
|
| 243 |
+
"""
|
| 244 |
+
Calculate an adaptive priority score for tasks based on intent, emotion, time urgency, and complexity.
|
| 245 |
+
"""
|
| 246 |
+
emotion_score = emotion_score if emotion_score is not None else 3
|
| 247 |
+
# Normalize time urgency (scale 0 to 1 based on 7 days)
|
| 248 |
+
time_score = max(0, min(1, 1 - (time_remaining.total_seconds() / (7 * 24 * 3600))))
|
| 249 |
+
|
| 250 |
+
# Set emotion-based adjustments
|
| 251 |
+
stress_emotions = ["nervousness", "sadness", "fear"]
|
| 252 |
+
frustration_emotions = ["anger", "frustration","disappointment","annoyance"]
|
| 253 |
+
anxiety_emotions = ["anxiety", "uncertainty"]
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
if emotion_category == "negative":
|
| 257 |
+
if emotion in stress_emotions:
|
| 258 |
+
# Prioritize **easy, quick** tasks to reduce cognitive load
|
| 259 |
+
priority = (predicted_intent_score * 0.15) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.45)
|
| 260 |
+
|
| 261 |
+
elif emotion in frustration_emotions:
|
| 262 |
+
# Prioritize **engaging** tasks (not too easy) but keep urgency in mind
|
| 263 |
+
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.15) + (time_score * 0.25) + (complexity * 0.4)
|
| 264 |
+
|
| 265 |
+
elif emotion in anxiety_emotions:
|
| 266 |
+
# Prioritize **urgent, low-complexity** tasks
|
| 267 |
+
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.4) + ((10 - complexity) * 0.3)
|
| 268 |
+
|
| 269 |
+
else:
|
| 270 |
+
# Default for negative emotions: balance urgency and ease
|
| 271 |
+
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.4)
|
| 272 |
+
|
| 273 |
+
elif emotion_category == "positive":
|
| 274 |
+
# If the user is in a **good mood**, favor challenging, high-impact tasks
|
| 275 |
+
priority = (predicted_intent_score * 0.35) + (emotion_score * 0.2) + (time_score * 0.25) + (complexity * 0.2)
|
| 276 |
+
|
| 277 |
+
else: # Neutral emotion
|
| 278 |
+
# Keep a balance between difficulty and urgency
|
| 279 |
+
priority = (predicted_intent_score * 0.3) + (emotion_score * 0.2) + (time_score * 0.2) + (complexity * 0.3)
|
| 280 |
+
|
| 281 |
+
return normalize_priority(priority) # Ensure no negative priority values
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
# AI-Generated Plan Based on Start Time
|
| 287 |
+
from datetime import datetime
|
| 288 |
+
|
| 289 |
+
def get_llama_suggestion(emotion, tasks, selected_datetime):
|
| 290 |
+
"""Generate AI plan based on full datetime instead of just time"""
|
| 291 |
+
# Sort tasks by priority (higher priority first)
|
| 292 |
+
sorted_tasks = sorted(tasks, key=lambda x: x["priority_score"], reverse=True)
|
| 293 |
+
|
| 294 |
+
# Filter tasks based on selected datetime
|
| 295 |
+
filtered_tasks = [
|
| 296 |
+
task for task in sorted_tasks
|
| 297 |
+
if task["due_date_time"] >= selected_datetime
|
| 298 |
+
]
|
| 299 |
+
|
| 300 |
+
if not filtered_tasks:
|
| 301 |
+
well_being_prompts = {
|
| 302 |
+
"nervousness": "Suggest mindfulness exercises and short relaxation techniques.",
|
| 303 |
+
"sadness": "Suggest comforting activities like journaling or light exercise.",
|
| 304 |
+
"anger": "Suggest ways to channel frustration productively.",
|
| 305 |
+
"joy": "Suggest ways to maintain productivity while feeling good.",
|
| 306 |
+
"neutral": "Suggest general relaxation activities like listening to music."
|
| 307 |
+
}
|
| 308 |
+
well_being_prompt = f"""
|
| 309 |
+
The user is feeling {emotion}.
|
| 310 |
+
They have no tasks scheduled after {selected_datetime.strftime('%B %d, %I:%M %p')}.
|
| 311 |
+
{well_being_prompts.get(emotion, 'Provide general well-being tips.')}
|
| 312 |
+
"""
|
| 313 |
+
try:
|
| 314 |
+
response = client.chat.completions.create(
|
| 315 |
+
messages=[{"role": "user", "content": well_being_prompt}],
|
| 316 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
| 317 |
+
temperature=0.7,
|
| 318 |
+
)
|
| 319 |
+
return response.choices[0].message.content
|
| 320 |
+
except Exception as e:
|
| 321 |
+
return f"Error generating well-being tips: {e}"
|
| 322 |
+
|
| 323 |
+
# Prepare the prompt with more detailed datetime information
|
| 324 |
+
task_details = "\n".join([
|
| 325 |
+
f"- {task['description']} (Priority: {task['priority_score']:.2f}, Complexity: {task['complexity']}, Due: {task['due_date_time'].strftime('%B %d, %I:%M %p')})"
|
| 326 |
+
for task in filtered_tasks
|
| 327 |
+
])
|
| 328 |
+
|
| 329 |
+
prompt = f"""
|
| 330 |
+
The user is feeling {emotion}.
|
| 331 |
+
They need a structured productivity plan starting from {selected_datetime.strftime('%B %d, %I:%M %p')}, not the current time.
|
| 332 |
+
|
| 333 |
+
Their prioritized tasks (due on or after the selected time), sorted by priority score:
|
| 334 |
+
{task_details}
|
| 335 |
+
|
| 336 |
+
Please provide:
|
| 337 |
+
1. A detailed schedule with specific times for each task
|
| 338 |
+
2. Strategic breaks based on task complexity and emotional state
|
| 339 |
+
3. Wellness activities that complement their current emotion
|
| 340 |
+
4. Tips for managing tasks effectively given their emotional state
|
| 341 |
+
5. Suggestions for handling high-priority tasks first while maintaining well-being
|
| 342 |
+
"""
|
| 343 |
+
|
| 344 |
+
try:
|
| 345 |
+
response = client.chat.completions.create(
|
| 346 |
+
messages=[{"role": "user", "content": prompt}],
|
| 347 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
| 348 |
+
temperature=0.7,
|
| 349 |
+
)
|
| 350 |
+
return response.choices[0].message.content
|
| 351 |
+
except Exception as e:
|
| 352 |
+
return f"Error generating AI plan: {e}"
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
# Layout with improved spacing
|
| 356 |
+
col1, col2 = st.columns([1, 1], gap="medium")
|
| 357 |
+
|
| 358 |
+
with col1:
|
| 359 |
+
# st.markdown('<div class="emotion-analysis">', unsafe_allow_html=True)
|
| 360 |
+
st.markdown('<h3>🌟 Mood Analysis</h3>', unsafe_allow_html=True)
|
| 361 |
+
emotion_sentence = st.text_area(
|
| 362 |
+
"Describe how you're feeling today:",
|
| 363 |
+
value="",
|
| 364 |
+
height=150,
|
| 365 |
+
help="Your emotional state helps us prioritize tasks more effectively"
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
if emotion_sentence:
|
| 369 |
+
emotion_score, emotion_label = predict_emotion(emotion_sentence)
|
| 370 |
+
st.session_state.overall_emotion = emotion_score
|
| 371 |
+
st.session_state.overall_emotion_label = emotion_label
|
| 372 |
+
|
| 373 |
+
st.markdown(f'<div class="emotion-badge">Detected Emotion: {emotion_label}</div>', unsafe_allow_html=True)
|
| 374 |
+
|
| 375 |
+
# Emotion-based task reprioritization
|
| 376 |
+
for task in st.session_state.tasks:
|
| 377 |
+
task["priority_score"] = calculate_priority_score(
|
| 378 |
+
task["predicted_intent_score"],
|
| 379 |
+
emotion_score,
|
| 380 |
+
emotion_label,
|
| 381 |
+
task["time_remaining"],
|
| 382 |
+
task["complexity"],
|
| 383 |
+
get_emotion_category(emotion_label)
|
| 384 |
+
)
|
| 385 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 386 |
+
|
| 387 |
+
with col2:
|
| 388 |
+
# st.markdown('<div class="task-input">', unsafe_allow_html=True)
|
| 389 |
+
st.markdown('<h3>📅 Add New Task</h3>', unsafe_allow_html=True)
|
| 390 |
+
with st.form("task_form", clear_on_submit=True):
|
| 391 |
+
task_description = st.text_input("Task Description", help="Be specific about what needs to be done")
|
| 392 |
+
col_date, col_time = st.columns(2)
|
| 393 |
+
|
| 394 |
+
with col_date:
|
| 395 |
+
due_date = st.date_input("Due Date")
|
| 396 |
+
|
| 397 |
+
with col_time:
|
| 398 |
+
due_time = st.time_input("Due Time")
|
| 399 |
+
|
| 400 |
+
complexity = st.slider(
|
| 401 |
+
"Task Complexity (1-10)",
|
| 402 |
+
1, 10, 5,
|
| 403 |
+
help="Higher complexity may affect task priority"
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
submitted = st.form_submit_button("➕ Add Task")
|
| 407 |
+
|
| 408 |
+
if submitted and task_description and due_date and due_time:
|
| 409 |
+
due_date_time = datetime.combine(due_date, due_time)
|
| 410 |
+
time_remaining = due_date_time - datetime.now()
|
| 411 |
+
predicted_intent_score = predict_intent(task_description)
|
| 412 |
+
|
| 413 |
+
task = {
|
| 414 |
+
"id": st.session_state.task_counter, # Add unique ID
|
| 415 |
+
"description": task_description,
|
| 416 |
+
"due_date_time": due_date_time,
|
| 417 |
+
"time_remaining": time_remaining,
|
| 418 |
+
"complexity": complexity,
|
| 419 |
+
"predicted_intent_score": predicted_intent_score,
|
| 420 |
+
"predicted_emotion": st.session_state.overall_emotion,
|
| 421 |
+
"predicted_label_name": st.session_state.overall_emotion_label,
|
| 422 |
+
"priority_score": calculate_priority_score(
|
| 423 |
+
predicted_intent_score,
|
| 424 |
+
st.session_state.overall_emotion,
|
| 425 |
+
st.session_state.overall_emotion_label,
|
| 426 |
+
time_remaining,
|
| 427 |
+
complexity,
|
| 428 |
+
get_emotion_category(st.session_state.overall_emotion_label)
|
| 429 |
+
),
|
| 430 |
+
"completed": False
|
| 431 |
+
}
|
| 432 |
+
|
| 433 |
+
st.session_state.tasks.append(task)
|
| 434 |
+
st.session_state.task_counter += 1 # Increment counter
|
| 435 |
+
st.success("✅ Task Added Successfully!")
|
| 436 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 437 |
+
|
| 438 |
+
# Task List with Improved Visualization
|
| 439 |
+
if st.session_state.tasks:
|
| 440 |
+
st.markdown('<h3>📌 Task Priority List</h3>', unsafe_allow_html=True)
|
| 441 |
+
|
| 442 |
+
# Sort tasks by priority
|
| 443 |
+
sorted_tasks = sorted(st.session_state.tasks, key=lambda x: x["priority_score"], reverse=True)
|
| 444 |
+
|
| 445 |
+
# Create task overview cards
|
| 446 |
+
st.markdown('<div class="task-overview">', unsafe_allow_html=True)
|
| 447 |
+
col1, col2 = st.columns(2)
|
| 448 |
+
with col1:
|
| 449 |
+
st.markdown(f'<div class="metric-card"><div class="metric-value">{len(sorted_tasks)}</div><div class="metric-label">Total Tasks</div></div>', unsafe_allow_html=True)
|
| 450 |
+
# with col2:
|
| 451 |
+
# high_priority = len([t for t in sorted_tasks if t["priority_score"] > 0.7])
|
| 452 |
+
# st.markdown(f'<div class="metric-card"><div class="metric-value">{high_priority}</div><div class="metric-label">High Priority</div></div>', unsafe_allow_html=True)
|
| 453 |
+
with col2:
|
| 454 |
+
today = datetime.now()
|
| 455 |
+
due_today = len([t for t in sorted_tasks if t["due_date_time"].date() == today.date()])
|
| 456 |
+
st.markdown(f'<div class="metric-card"><div class="metric-value">{due_today}</div><div class="metric-label">Due Today</div></div>', unsafe_allow_html=True)
|
| 457 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 458 |
+
|
| 459 |
+
# Display tasks with priority-based styling
|
| 460 |
+
for idx, task in enumerate(sorted_tasks):
|
| 461 |
+
priority_class = "high-priority" if task["priority_score"] > 0.7 else "medium-priority"
|
| 462 |
+
|
| 463 |
+
# Create a single row for task and buttons
|
| 464 |
+
task_container = st.container()
|
| 465 |
+
with task_container:
|
| 466 |
+
cols = st.columns([0.8, 0.1, 0.1])
|
| 467 |
+
|
| 468 |
+
# Task content in first column
|
| 469 |
+
with cols[0]:
|
| 470 |
+
st.markdown(f"""
|
| 471 |
+
<div class="priority-task {priority_class}">
|
| 472 |
+
<div class="task-content">
|
| 473 |
+
<div class="task-header">
|
| 474 |
+
<span class="task-title">{task["description"]}</span>
|
| 475 |
+
<span class="priority-score">Priority: {task["priority_score"]:.2f}</span>
|
| 476 |
+
</div>
|
| 477 |
+
<div class="task-details">
|
| 478 |
+
<span class="task-stat">Due: {task["due_date_time"].strftime("%d %b, %I:%M %p")}</span>
|
| 479 |
+
<span class="task-stat">Complexity: {task["complexity"]}</span>
|
| 480 |
+
</div>
|
| 481 |
+
</div>
|
| 482 |
+
</div>
|
| 483 |
+
""", unsafe_allow_html=True)
|
| 484 |
+
st.session_state.editing_task_id = None
|
| 485 |
+
# Edit button
|
| 486 |
+
with cols[1]:
|
| 487 |
+
if st.button("✏️", key=f"edit_{idx}", help="Edit task"):
|
| 488 |
+
st.session_state.editing_task_id = idx
|
| 489 |
+
|
| 490 |
+
# Delete button
|
| 491 |
+
with cols[2]:
|
| 492 |
+
if st.button("🗑️", key=f"delete_{idx}", help="Delete task"):
|
| 493 |
+
st.session_state.tasks.pop(idx)
|
| 494 |
+
st.success("Task deleted!")
|
| 495 |
+
st.rerun()
|
| 496 |
+
|
| 497 |
+
# Show edit form below the task if being edited
|
| 498 |
+
if st.session_state.editing_task_id == idx:
|
| 499 |
+
with st.form(key=f"edit_form_{idx}"):
|
| 500 |
+
col1, col2 = st.columns(2)
|
| 501 |
+
with col1:
|
| 502 |
+
new_description = st.text_input("Description", value=task["description"])
|
| 503 |
+
new_complexity = st.slider("Complexity", 1, 10, value=task["complexity"])
|
| 504 |
+
with col2:
|
| 505 |
+
new_due_date = st.date_input("Due Date", value=task["due_date_time"].date())
|
| 506 |
+
new_due_time = st.time_input("Due Time", value=task["due_date_time"].time())
|
| 507 |
+
|
| 508 |
+
col1, col2 = st.columns(2)
|
| 509 |
+
with col1:
|
| 510 |
+
if st.form_submit_button("💾 Save"):
|
| 511 |
+
# Update task
|
| 512 |
+
task["description"] = new_description
|
| 513 |
+
task["due_date_time"] = datetime.combine(new_due_date, new_due_time)
|
| 514 |
+
task["time_remaining"] = task["due_date_time"] - datetime.now()
|
| 515 |
+
task["complexity"] = new_complexity
|
| 516 |
+
|
| 517 |
+
# Recalculate priority
|
| 518 |
+
task["priority_score"] = calculate_priority_score(
|
| 519 |
+
task["predicted_intent_score"],
|
| 520 |
+
task["predicted_emotion"],
|
| 521 |
+
task["predicted_label_name"],
|
| 522 |
+
task["time_remaining"],
|
| 523 |
+
task["complexity"],
|
| 524 |
+
get_emotion_category(task["predicted_label_name"])
|
| 525 |
+
)
|
| 526 |
+
st.session_state.editing_task_id = None
|
| 527 |
+
st.success("Task updated!")
|
| 528 |
+
st.rerun()
|
| 529 |
+
|
| 530 |
+
with col2:
|
| 531 |
+
if st.form_submit_button("❌ Cancel"):
|
| 532 |
+
st.session_state.editing_task_id = None
|
| 533 |
+
st.rerun()
|
| 534 |
+
|
| 535 |
+
# AI Plan Section
|
| 536 |
+
if st.session_state.tasks:
|
| 537 |
+
st.markdown('<div class="custom-card">', unsafe_allow_html=True)
|
| 538 |
+
st.markdown('<h3>⏰ AI Task Planning</h3>', unsafe_allow_html=True)
|
| 539 |
+
|
| 540 |
+
col_date, col_time = st.columns(2)
|
| 541 |
+
|
| 542 |
+
with col_date:
|
| 543 |
+
plan_date = st.date_input("Select Plan Date", datetime.now().date())
|
| 544 |
+
|
| 545 |
+
with col_time:
|
| 546 |
+
plan_time = st.time_input("Select Plan Start Time", datetime.now().time())
|
| 547 |
+
|
| 548 |
+
selected_datetime = datetime.combine(plan_date, plan_time)
|
| 549 |
+
|
| 550 |
+
if st.button("📅 Generate AI Plan"):
|
| 551 |
+
suggestion = get_llama_suggestion(
|
| 552 |
+
st.session_state.overall_emotion_label,
|
| 553 |
+
st.session_state.tasks,
|
| 554 |
+
selected_datetime # Pass full datetime object
|
| 555 |
+
)
|
| 556 |
+
st.markdown(f'<div class="info-box">{suggestion}</div>', unsafe_allow_html=True)
|
| 557 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 558 |
+
|
task_css.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def get_custom_css():
|
| 2 |
+
return """
|
| 3 |
+
<style>
|
| 4 |
+
:root {
|
| 5 |
+
/* Refined Color Palette */
|
| 6 |
+
--primary-blue: #3B82F6; /* Vibrant Blue */
|
| 7 |
+
--primary-dark: #1E40AF; /* Deeper Blue */
|
| 8 |
+
--accent-teal: #0EA5E9; /* Bright Teal */
|
| 9 |
+
--background-light: #F9FAFB; /* Soft White */
|
| 10 |
+
--text-dark: #1E293B; /* Deep Navy */
|
| 11 |
+
--text-medium: #475569; /* Medium Slate */
|
| 12 |
+
--accent-orange: #F97316; /* Warm Orange */
|
| 13 |
+
--success-green: #10B981; /* Emerald Green */
|
| 14 |
+
--warning-yellow: #FBBF24; /* Amber Yellow */
|
| 15 |
+
--error-red: #EF4444; /* Cherry Red */
|
| 16 |
+
|
| 17 |
+
/* Refined Gradients */
|
| 18 |
+
--gradient-primary: linear-gradient(135deg, var(--primary-blue), var(--primary-dark));
|
| 19 |
+
--gradient-accent: linear-gradient(135deg, var(--accent-teal), #38BDF8);
|
| 20 |
+
--gradient-warm: linear-gradient(135deg, var(--accent-orange), #FB923C);
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
/* Global Reset with Professional Typography */
|
| 24 |
+
body, .stApp {
|
| 25 |
+
font-family: 'Inter', system-ui, -apple-system, sans-serif;
|
| 26 |
+
background-color: var(--background-light) !important;
|
| 27 |
+
color: var(--text-dark);
|
| 28 |
+
line-height: 1.6;
|
| 29 |
+
letter-spacing: -0.011em;
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
/* App Container with Refined Depth */
|
| 33 |
+
[data-testid="stAppViewContainer"] {
|
| 34 |
+
background-color: var(--background-light) !important;
|
| 35 |
+
max-width: 1100px;
|
| 36 |
+
margin: 0 auto;
|
| 37 |
+
padding: 2.5rem;
|
| 38 |
+
border-radius: 16px;
|
| 39 |
+
box-shadow:
|
| 40 |
+
0 20px 25px -5px rgba(59, 130, 246, 0.1),
|
| 41 |
+
0 10px 10px -5px rgba(59, 130, 246, 0.04),
|
| 42 |
+
inset 0 1px 0 rgba(255, 255, 255, 0.8);
|
| 43 |
+
transition: all 0.3s ease;
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
/* Professional Header */
|
| 47 |
+
.main-header {
|
| 48 |
+
display: flex;
|
| 49 |
+
align-items: center;
|
| 50 |
+
justify-content: center;
|
| 51 |
+
margin-bottom: 2rem;
|
| 52 |
+
color: var(--primary-blue);
|
| 53 |
+
font-size: 2rem;
|
| 54 |
+
font-weight: 700;
|
| 55 |
+
letter-spacing: -0.03em;
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
.main-header::before {
|
| 59 |
+
|
| 60 |
+
margin-right: 15px;
|
| 61 |
+
font-size: 2.2rem;
|
| 62 |
+
transition: transform 0.3s ease;
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
.main-title:hover::before {
|
| 66 |
+
transform: scale(1.1) rotate(5deg);
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
/* Professional Card Sections */
|
| 70 |
+
.emotion-analysis, .task-input {
|
| 71 |
+
background-color: white;
|
| 72 |
+
border-radius: 12px;
|
| 73 |
+
padding: 1.8rem;
|
| 74 |
+
box-shadow:
|
| 75 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.1),
|
| 76 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.06);
|
| 77 |
+
margin-bottom: 1.5rem;
|
| 78 |
+
transition: all 0.2s ease;
|
| 79 |
+
border-top: 3px solid var(--primary-blue);
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
.emotion-analysis:hover, .task-input:hover {
|
| 83 |
+
transform: translateY(-3px);
|
| 84 |
+
box-shadow:
|
| 85 |
+
0 10px 15px -3px rgba(59, 130, 246, 0.1),
|
| 86 |
+
0 4px 6px -2px rgba(59, 130, 246, 0.05);
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
/* Section Headers */
|
| 90 |
+
.stMarkdown h3 {
|
| 91 |
+
color: var(--primary-blue);
|
| 92 |
+
font-weight: 600;
|
| 93 |
+
font-size: 1.3rem;
|
| 94 |
+
margin-bottom: 1rem;
|
| 95 |
+
letter-spacing: -0.01em;
|
| 96 |
+
border-bottom: 1px solid rgba(59, 130, 246, 0.2);
|
| 97 |
+
padding-bottom: 0.5rem;
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
/* Polished Input Elements */
|
| 101 |
+
.stTextArea textarea,
|
| 102 |
+
.stTextInput>div>div>input {
|
| 103 |
+
border: 1px solid rgba(59, 130, 246, 0.3) !important;
|
| 104 |
+
border-radius: 8px !important;
|
| 105 |
+
padding: 12px 14px !important;
|
| 106 |
+
background-color: white !important;
|
| 107 |
+
color: var(--text-dark) !important;
|
| 108 |
+
font-weight: 400;
|
| 109 |
+
transition: all 0.2s ease !important;
|
| 110 |
+
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05) !important;
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
.stTextArea textarea:focus,
|
| 114 |
+
.stTextInput>div>div>input:focus {
|
| 115 |
+
border-color: var(--primary-blue) !important;
|
| 116 |
+
box-shadow:
|
| 117 |
+
0 0 0 3px rgba(59, 130, 246, 0.15) !important,
|
| 118 |
+
0 1px 2px rgba(0, 0, 0, 0.05) !important;
|
| 119 |
+
outline: none !important;
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
/* Contextual Badges */
|
| 123 |
+
.emotion-badge {
|
| 124 |
+
background: var(--gradient-accent);
|
| 125 |
+
color: white !important;
|
| 126 |
+
border-radius: 6px;
|
| 127 |
+
padding: 8px 12px;
|
| 128 |
+
font-weight: 600;
|
| 129 |
+
display: inline-block;
|
| 130 |
+
margin-top: 10px;
|
| 131 |
+
box-shadow: 0 2px 4px rgba(14, 165, 233, 0.2);
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
.warning-badge {
|
| 135 |
+
background: var(--gradient-warm);
|
| 136 |
+
color: white !important;
|
| 137 |
+
border-radius: 6px;
|
| 138 |
+
padding: 8px 12px;
|
| 139 |
+
font-weight: 600;
|
| 140 |
+
display: inline-block;
|
| 141 |
+
box-shadow: 0 2px 4px rgba(249, 115, 22, 0.2);
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
/* Professional Button */
|
| 145 |
+
.stButton>button {
|
| 146 |
+
background: var(--gradient-primary) !important;
|
| 147 |
+
color: white !important;
|
| 148 |
+
border: none !important;
|
| 149 |
+
border-radius: 8px !important;
|
| 150 |
+
padding: 10px 20px !important;
|
| 151 |
+
font-weight: 600;
|
| 152 |
+
font-size: 0.9rem;
|
| 153 |
+
letter-spacing: 0.02em;
|
| 154 |
+
transition: all 0.2s ease !important;
|
| 155 |
+
box-shadow:
|
| 156 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.2),
|
| 157 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.1);
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
.stButton>button:hover {
|
| 161 |
+
transform: translateY(-2px);
|
| 162 |
+
box-shadow:
|
| 163 |
+
0 6px 10px -1px rgba(59, 130, 246, 0.25),
|
| 164 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.15);
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
.stButton>button:active {
|
| 168 |
+
transform: translateY(0);
|
| 169 |
+
box-shadow:
|
| 170 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.2),
|
| 171 |
+
0 1px 2px -1px rgba(59, 130, 246, 0.1);
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
/* Improved Slider */
|
| 175 |
+
.stSlider {
|
| 176 |
+
margin-top: 12px;
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
.stSlider > div > div > div {
|
| 180 |
+
background-color: #CBD5E1 !important;
|
| 181 |
+
height: 6px !important;
|
| 182 |
+
border-radius: 3px !important;
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
.stSlider > div > div > div > div {
|
| 186 |
+
background: var(--primary-blue) !important;
|
| 187 |
+
box-shadow: 0 0 0 2px white, 0 0 0 3px rgba(59, 130, 246, 0.2) !important;
|
| 188 |
+
width: 18px !important;
|
| 189 |
+
height: 18px !important;
|
| 190 |
+
border-radius: 50% !important;
|
| 191 |
+
transition: transform 0.2s ease !important;
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
.stSlider > div > div > div > div:hover {
|
| 195 |
+
transform: scale(1.15) !important;
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
/* Progress Bar */
|
| 199 |
+
.stProgress > div > div > div {
|
| 200 |
+
background-color: var(--primary-blue) !important;
|
| 201 |
+
border-radius: 4px !important;
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
/* Select Boxes */
|
| 205 |
+
.stSelectbox label {
|
| 206 |
+
color: var(--text-medium) !important;
|
| 207 |
+
font-weight: 500 !important;
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
.stSelectbox > div > div > div {
|
| 211 |
+
background-color: white !important;
|
| 212 |
+
border: 1px solid rgba(59, 130, 246, 0.3) !important;
|
| 213 |
+
border-radius: 8px !important;
|
| 214 |
+
padding: 4px 8px !important;
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
/* Checkbox */
|
| 218 |
+
.stCheckbox label {
|
| 219 |
+
color: var(--text-medium) !important;
|
| 220 |
+
font-size: 0.95rem !important;
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
/* Tabs */
|
| 224 |
+
.stTabs [data-baseweb="tab-list"] {
|
| 225 |
+
gap: 2px;
|
| 226 |
+
background-color: rgba(59, 130, 246, 0.1) !important;
|
| 227 |
+
border-radius: 8px !important;
|
| 228 |
+
padding: 2px !important;
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
.stTabs [data-baseweb="tab"] {
|
| 232 |
+
background-color: transparent !important;
|
| 233 |
+
border-radius: 6px !important;
|
| 234 |
+
padding: 8px 16px !important;
|
| 235 |
+
border: none !important;
|
| 236 |
+
color: var(--text-medium) !important;
|
| 237 |
+
font-weight: 500 !important;
|
| 238 |
+
transition: all 0.2s ease !important;
|
| 239 |
+
}
|
| 240 |
+
|
| 241 |
+
.stTabs [aria-selected="true"] {
|
| 242 |
+
background-color: white !important;
|
| 243 |
+
color: var(--primary-blue) !important;
|
| 244 |
+
font-weight: 600 !important;
|
| 245 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
/* Info Boxes */
|
| 249 |
+
.info-box {
|
| 250 |
+
background-color: rgba(14, 165, 233, 0.1);
|
| 251 |
+
border-left: 3px solid var(--accent-teal);
|
| 252 |
+
border-radius: 6px;
|
| 253 |
+
padding: 15px;
|
| 254 |
+
margin: 15px 0;
|
| 255 |
+
color: var(--text-dark);
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
.success-box {
|
| 259 |
+
background-color: rgba(16, 185, 129, 0.1);
|
| 260 |
+
border-left: 3px solid var(--success-green);
|
| 261 |
+
border-radius: 6px;
|
| 262 |
+
padding: 15px;
|
| 263 |
+
margin: 15px 0;
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
.warning-box {
|
| 267 |
+
background-color: rgba(251, 191, 36, 0.1);
|
| 268 |
+
border-left: 3px solid var(--warning-yellow);
|
| 269 |
+
border-radius: 6px;
|
| 270 |
+
padding: 15px;
|
| 271 |
+
margin: 15px 0;
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
.error-box {
|
| 275 |
+
background-color: rgba(239, 68, 68, 0.1);
|
| 276 |
+
border-left: 3px solid var(--error-red);
|
| 277 |
+
border-radius: 6px;
|
| 278 |
+
padding: 15px;
|
| 279 |
+
margin: 15px 0;
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
/* Data Elements */
|
| 283 |
+
.metric-card {
|
| 284 |
+
background-color: white;
|
| 285 |
+
border-radius: 10px;
|
| 286 |
+
padding: 20px;
|
| 287 |
+
display: flex;
|
| 288 |
+
flex-direction: column;
|
| 289 |
+
align-items: center;
|
| 290 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05);
|
| 291 |
+
border-top: 3px solid var(--primary-blue);
|
| 292 |
+
}
|
| 293 |
+
|
| 294 |
+
.metric-value {
|
| 295 |
+
font-size: 2rem;
|
| 296 |
+
font-weight: 700;
|
| 297 |
+
color: var(--primary-blue);
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
.metric-label {
|
| 301 |
+
font-size: 0.9rem;
|
| 302 |
+
color: var(--text-medium);
|
| 303 |
+
margin-top: 5px;
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
/* Action Menu */
|
| 307 |
+
.action-menu {
|
| 308 |
+
position: relative;
|
| 309 |
+
display: inline-block;
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
+
.action-menu-content {
|
| 313 |
+
display: none;
|
| 314 |
+
position: absolute;
|
| 315 |
+
right: 0;
|
| 316 |
+
background-color: white;
|
| 317 |
+
min-width: 120px;
|
| 318 |
+
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
|
| 319 |
+
z-index: 1;
|
| 320 |
+
border-radius: 8px;
|
| 321 |
+
overflow: hidden;
|
| 322 |
+
}
|
| 323 |
+
|
| 324 |
+
.action-menu-content a {
|
| 325 |
+
color: var(--text-dark);
|
| 326 |
+
padding: 12px 16px;
|
| 327 |
+
text-decoration: none;
|
| 328 |
+
display: block;
|
| 329 |
+
transition: background-color 0.2s ease;
|
| 330 |
+
}
|
| 331 |
+
|
| 332 |
+
.action-menu-content a:hover {
|
| 333 |
+
background-color: var(--primary-blue);
|
| 334 |
+
color: white;
|
| 335 |
+
}
|
| 336 |
+
|
| 337 |
+
.action-menu:hover .action-menu-content {
|
| 338 |
+
display: block;
|
| 339 |
+
}
|
| 340 |
+
|
| 341 |
+
.action-menu .three-dots {
|
| 342 |
+
cursor: pointer;
|
| 343 |
+
font-size: 1.5rem;
|
| 344 |
+
color: var(--text-medium);
|
| 345 |
+
}
|
| 346 |
+
|
| 347 |
+
/* Task Content Styling */
|
| 348 |
+
.task-content {
|
| 349 |
+
flex: 1;
|
| 350 |
+
padding-right: 20px;
|
| 351 |
+
}
|
| 352 |
+
|
| 353 |
+
.task-header {
|
| 354 |
+
display: flex;
|
| 355 |
+
justify-content: space-between;
|
| 356 |
+
align-items: center;
|
| 357 |
+
margin-bottom: 8px;
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
.task-title {
|
| 361 |
+
font-weight: 600;
|
| 362 |
+
color: var(--text-dark);
|
| 363 |
+
font-size: 1rem;
|
| 364 |
+
}
|
| 365 |
+
|
| 366 |
+
.priority-score {
|
| 367 |
+
background: var(--gradient-primary);
|
| 368 |
+
color: white;
|
| 369 |
+
padding: 4px 8px;
|
| 370 |
+
border-radius: 4px;
|
| 371 |
+
font-size: 0.85rem;
|
| 372 |
+
font-weight: 600;
|
| 373 |
+
}
|
| 374 |
+
|
| 375 |
+
.task-details {
|
| 376 |
+
display: flex;
|
| 377 |
+
gap: 16px;
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
.task-stat {
|
| 381 |
+
color: var(--text-medium);
|
| 382 |
+
font-size: 0.9rem;
|
| 383 |
+
}
|
| 384 |
+
|
| 385 |
+
/* Priority Task List */
|
| 386 |
+
.priority-task {
|
| 387 |
+
display: flex;
|
| 388 |
+
justify-content: space-between;
|
| 389 |
+
align-items: center;
|
| 390 |
+
padding: 15px;
|
| 391 |
+
border-radius: 8px;
|
| 392 |
+
margin-bottom: 8px;
|
| 393 |
+
background-color: white;
|
| 394 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
|
| 395 |
+
}
|
| 396 |
+
|
| 397 |
+
.high-priority {
|
| 398 |
+
border-left: 4px solid var(--error-red);
|
| 399 |
+
}
|
| 400 |
+
|
| 401 |
+
.medium-priority {
|
| 402 |
+
border-left: 4px solid var(--warning-yellow);
|
| 403 |
+
}
|
| 404 |
+
|
| 405 |
+
/* Responsive Design */
|
| 406 |
+
@media (max-width: 768px) {
|
| 407 |
+
[data-testid="stAppViewContainer"] {
|
| 408 |
+
padding: 1.2rem;
|
| 409 |
+
border-radius: 12px;
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
.main-title {
|
| 413 |
+
font-size: 1.8rem;
|
| 414 |
+
}
|
| 415 |
+
|
| 416 |
+
.emotion-analysis, .task-input {
|
| 417 |
+
padding: 1.2rem;
|
| 418 |
+
}
|
| 419 |
+
|
| 420 |
+
.metric-value {
|
| 421 |
+
font-size: 1.6rem;
|
| 422 |
+
}
|
| 423 |
+
}
|
| 424 |
+
|
| 425 |
+
/* Loading Spinner */
|
| 426 |
+
.loading-container {
|
| 427 |
+
display: flex;
|
| 428 |
+
flex-direction: column;
|
| 429 |
+
align-items: center;
|
| 430 |
+
justify-content: center;
|
| 431 |
+
height: 60vh;
|
| 432 |
+
}
|
| 433 |
+
|
| 434 |
+
.loading-spinner {
|
| 435 |
+
width: 50px;
|
| 436 |
+
height: 50px;
|
| 437 |
+
border: 5px solid #f3f3f3;
|
| 438 |
+
border-top: 5px solid var(--primary-blue);
|
| 439 |
+
border-radius: 50%;
|
| 440 |
+
animation: spin 1s linear infinite;
|
| 441 |
+
margin-bottom: 20px;
|
| 442 |
+
}
|
| 443 |
+
|
| 444 |
+
@keyframes spin {
|
| 445 |
+
0% { transform: rotate(0deg); }
|
| 446 |
+
100% { transform: rotate(360deg); }
|
| 447 |
+
}
|
| 448 |
+
|
| 449 |
+
/* Status Messages */
|
| 450 |
+
.status-message {
|
| 451 |
+
background: white;
|
| 452 |
+
padding: 10px 15px;
|
| 453 |
+
border-radius: 8px;
|
| 454 |
+
margin: 5px 0;
|
| 455 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 456 |
+
}
|
| 457 |
+
</style>
|
| 458 |
+
"""
|
task_prioritizer.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import BertTokenizer, BertForSequenceClassification, DistilBertForSequenceClassification
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
|
| 5 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 6 |
+
|
| 7 |
+
# Load the intent classifier model and tokenizer
|
| 8 |
+
num_intent_labels = 151 # Set the correct number of labels for the intent classifier
|
| 9 |
+
intent_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_intent_labels)
|
| 10 |
+
intent_model.load_state_dict(torch.load("intent_classifier.pth"))
|
| 11 |
+
intent_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 12 |
+
intent_model.to(device)
|
| 13 |
+
intent_model.eval()
|
| 14 |
+
|
| 15 |
+
# Load the emotions model and tokenizer
|
| 16 |
+
emotions_model = DistilBertForSequenceClassification.from_pretrained("./saved_model")
|
| 17 |
+
emotions_tokenizer = BertTokenizer.from_pretrained("./saved_model")
|
| 18 |
+
emotions_model.to(device)
|
| 19 |
+
emotions_model.eval()
|
| 20 |
+
|
| 21 |
+
# Define the label names for emotions
|
| 22 |
+
emotion_label_names = ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"]
|
| 23 |
+
|
| 24 |
+
def predict_intent(sentence):
|
| 25 |
+
inputs = intent_tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
| 26 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 27 |
+
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
outputs = intent_model(**inputs)
|
| 30 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 31 |
+
|
| 32 |
+
return predicted_class
|
| 33 |
+
|
| 34 |
+
def predict_emotion(sentence):
|
| 35 |
+
inputs = emotions_tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
| 36 |
+
inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"}
|
| 37 |
+
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
outputs = emotions_model(**inputs)
|
| 40 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 41 |
+
|
| 42 |
+
return predicted_class, emotion_label_names[predicted_class]
|
| 43 |
+
|
| 44 |
+
def calculate_priority_score(intent, emotion, time_remaining):
|
| 45 |
+
# Example priority score calculation
|
| 46 |
+
intent_weight = 0.4
|
| 47 |
+
emotion_weight = 0.3
|
| 48 |
+
time_weight = 0.3
|
| 49 |
+
|
| 50 |
+
# Normalize time_remaining to a score between 0 and 1
|
| 51 |
+
time_score = max(0, min(1, 1 - (time_remaining.total_seconds() / (24 * 3600))))
|
| 52 |
+
|
| 53 |
+
# Calculate priority score
|
| 54 |
+
priority_score = (intent * intent_weight) + (emotion * emotion_weight) + (time_score * time_weight)
|
| 55 |
+
return priority_score
|
| 56 |
+
|
| 57 |
+
def prioritize_task(task_description, due_date_time, predicted_emotion, predicted_label_name):
|
| 58 |
+
predicted_intent = predict_intent(task_description)
|
| 59 |
+
|
| 60 |
+
# Calculate time remaining until the due date and time
|
| 61 |
+
due_date_time = datetime.strptime(due_date_time, "%Y-%m-%d %H:%M:%S")
|
| 62 |
+
time_remaining = due_date_time - datetime.now()
|
| 63 |
+
|
| 64 |
+
priority_score = calculate_priority_score(predicted_intent, predicted_emotion, time_remaining)
|
| 65 |
+
|
| 66 |
+
return {
|
| 67 |
+
"description": task_description,
|
| 68 |
+
"due_date_time": due_date_time,
|
| 69 |
+
"time_remaining": time_remaining,
|
| 70 |
+
"predicted_intent": predicted_intent,
|
| 71 |
+
"predicted_emotion": predicted_emotion,
|
| 72 |
+
"predicted_label_name": predicted_label_name,
|
| 73 |
+
"priority_score": priority_score
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
# Example tasks
|
| 77 |
+
tasks = [
|
| 78 |
+
{"description": "Finish the report by tomorrow.", "due_date_time": "2025-03-02 09:00:00"},
|
| 79 |
+
{"description": "meeting", "due_date_time": "2025-03-02 12:00:00"},
|
| 80 |
+
{"description": "listen to music.", "due_date_time": "2025-03-02 15:00:00"},
|
| 81 |
+
{"description": "daily linkedin queens game.", "due_date_time": "2025-03-02 18:00:00"},
|
| 82 |
+
{"description": "prepare ppt", "due_date_time": "2025-03-02 21:00:00"}
|
| 83 |
+
]
|
| 84 |
+
|
| 85 |
+
# Overall emotion sentence
|
| 86 |
+
emotion_sentence = "I am feeling very tired and stressed now"
|
| 87 |
+
predicted_emotion, predicted_label_name = predict_emotion(emotion_sentence)
|
| 88 |
+
|
| 89 |
+
# Prioritize tasks
|
| 90 |
+
prioritized_tasks = []
|
| 91 |
+
for task in tasks:
|
| 92 |
+
prioritized_tasks.append(prioritize_task(task["description"], task["due_date_time"], predicted_emotion, predicted_label_name))
|
| 93 |
+
|
| 94 |
+
# Reorder tasks based on priority score (descending order)
|
| 95 |
+
prioritized_tasks.sort(key=lambda x: x["priority_score"], reverse=True)
|
| 96 |
+
|
| 97 |
+
# Print prioritized tasks
|
| 98 |
+
for task in prioritized_tasks:
|
| 99 |
+
print(f"Task Description: '{task['description']}'")
|
| 100 |
+
print(f"Due Date and Time: {task['due_date_time']}")
|
| 101 |
+
print(f"Time Remaining: {task['time_remaining']}")
|
| 102 |
+
print(f"Predicted Intent: {task['predicted_intent']}")
|
| 103 |
+
print(f"Predicted Emotion: {task['predicted_emotion']} ({task['predicted_label_name']})")
|
| 104 |
+
print(f"Priority Score: {task['priority_score']:.4f}")
|
| 105 |
+
print()
|
task_ui.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def get_custom_css():
|
| 2 |
+
return """
|
| 3 |
+
<style>
|
| 4 |
+
:root {
|
| 5 |
+
/* Refined Color Palette */
|
| 6 |
+
--primary-blue: #3B82F6; /* Vibrant Blue */
|
| 7 |
+
--primary-dark: #1E40AF; /* Deeper Blue */
|
| 8 |
+
--accent-teal: #0EA5E9; /* Bright Teal */
|
| 9 |
+
--background-light: #F9FAFB; /* Soft White */
|
| 10 |
+
--text-dark: #1E293B; /* Deep Navy */
|
| 11 |
+
--text-medium: #475569; /* Medium Slate */
|
| 12 |
+
--accent-orange: #F97316; /* Warm Orange */
|
| 13 |
+
--success-green: #10B981; /* Emerald Green */
|
| 14 |
+
--warning-yellow: #FBBF24; /* Amber Yellow */
|
| 15 |
+
--error-red: #EF4444; /* Cherry Red */
|
| 16 |
+
|
| 17 |
+
/* Refined Gradients */
|
| 18 |
+
--gradient-primary: linear-gradient(135deg, var(--primary-blue), var(--primary-dark));
|
| 19 |
+
--gradient-accent: linear-gradient(135deg, var(--accent-teal), #38BDF8);
|
| 20 |
+
--gradient-warm: linear-gradient(135deg, var(--accent-orange), #FB923C);
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
/* Global Reset with Professional Typography */
|
| 24 |
+
body, .stApp {
|
| 25 |
+
font-family: 'Inter', system-ui, -apple-system, sans-serif;
|
| 26 |
+
background-color: var(--background-light) !important;
|
| 27 |
+
color: var(--text-dark);
|
| 28 |
+
line-height: 1.6;
|
| 29 |
+
letter-spacing: -0.011em;
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
/* App Container with Refined Depth */
|
| 33 |
+
[data-testid="stAppViewContainer"] {
|
| 34 |
+
background-color: var(--background-light) !important;
|
| 35 |
+
max-width: 1100px;
|
| 36 |
+
margin: 0 auto;
|
| 37 |
+
padding: 2.5rem;
|
| 38 |
+
border-radius: 16px;
|
| 39 |
+
box-shadow:
|
| 40 |
+
0 20px 25px -5px rgba(59, 130, 246, 0.1),
|
| 41 |
+
0 10px 10px -5px rgba(59, 130, 246, 0.04),
|
| 42 |
+
inset 0 1px 0 rgba(255, 255, 255, 0.8);
|
| 43 |
+
transition: all 0.3s ease;
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
/* Professional Header */
|
| 47 |
+
.main-title {
|
| 48 |
+
display: flex;
|
| 49 |
+
align-items: center;
|
| 50 |
+
justify-content: center;
|
| 51 |
+
margin-bottom: 2rem;
|
| 52 |
+
color: var(--primary-blue);
|
| 53 |
+
font-size: 2.5rem;
|
| 54 |
+
font-weight: 700;
|
| 55 |
+
letter-spacing: -0.03em;
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
.main-title::before {
|
| 59 |
+
|
| 60 |
+
margin-right: 15px;
|
| 61 |
+
font-size: 2.2rem;
|
| 62 |
+
transition: transform 0.3s ease;
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
.main-title:hover::before {
|
| 66 |
+
transform: scale(1.1) rotate(5deg);
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
/* Professional Card Sections */
|
| 70 |
+
.emotion-analysis, .task-input {
|
| 71 |
+
background-color: white;
|
| 72 |
+
border-radius: 12px;
|
| 73 |
+
padding: 1.8rem;
|
| 74 |
+
box-shadow:
|
| 75 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.1),
|
| 76 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.06);
|
| 77 |
+
margin-bottom: 1.5rem;
|
| 78 |
+
transition: all 0.2s ease;
|
| 79 |
+
border-top: 3px solid var(--primary-blue);
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
.emotion-analysis:hover, .task-input:hover {
|
| 83 |
+
transform: translateY(-3px);
|
| 84 |
+
box-shadow:
|
| 85 |
+
0 10px 15px -3px rgba(59, 130, 246, 0.1),
|
| 86 |
+
0 4px 6px -2px rgba(59, 130, 246, 0.05);
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
/* Section Headers */
|
| 90 |
+
.stMarkdown h3 {
|
| 91 |
+
color: var(--primary-blue);
|
| 92 |
+
font-weight: 600;
|
| 93 |
+
font-size: 1.3rem;
|
| 94 |
+
margin-bottom: 1rem;
|
| 95 |
+
letter-spacing: -0.01em;
|
| 96 |
+
border-bottom: 1px solid rgba(59, 130, 246, 0.2);
|
| 97 |
+
padding-bottom: 0.5rem;
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
/* Polished Input Elements */
|
| 101 |
+
.stTextArea textarea,
|
| 102 |
+
.stTextInput>div>div>input {
|
| 103 |
+
border: 1px solid rgba(59, 130, 246, 0.3) !important;
|
| 104 |
+
border-radius: 8px !important;
|
| 105 |
+
padding: 12px 14px !important;
|
| 106 |
+
background-color: white !important;
|
| 107 |
+
color: var(--text-dark) !important;
|
| 108 |
+
font-weight: 400;
|
| 109 |
+
transition: all 0.2s ease !important;
|
| 110 |
+
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05) !important;
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
.stTextArea textarea:focus,
|
| 114 |
+
.stTextInput>div>div>input:focus {
|
| 115 |
+
border-color: var(--primary-blue) !important;
|
| 116 |
+
box-shadow:
|
| 117 |
+
0 0 0 3px rgba(59, 130, 246, 0.15) !important,
|
| 118 |
+
0 1px 2px rgba(0, 0, 0, 0.05) !important;
|
| 119 |
+
outline: none !important;
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
/* Contextual Badges */
|
| 123 |
+
.emotion-badge {
|
| 124 |
+
background: var(--gradient-accent);
|
| 125 |
+
color: white !important;
|
| 126 |
+
border-radius: 6px;
|
| 127 |
+
padding: 8px 12px;
|
| 128 |
+
font-weight: 600;
|
| 129 |
+
display: inline-block;
|
| 130 |
+
margin-top: 10px;
|
| 131 |
+
box-shadow: 0 2px 4px rgba(14, 165, 233, 0.2);
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
.warning-badge {
|
| 135 |
+
background: var(--gradient-warm);
|
| 136 |
+
color: white !important;
|
| 137 |
+
border-radius: 6px;
|
| 138 |
+
padding: 8px 12px;
|
| 139 |
+
font-weight: 600;
|
| 140 |
+
display: inline-block;
|
| 141 |
+
box-shadow: 0 2px 4px rgba(249, 115, 22, 0.2);
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
/* Professional Button */
|
| 145 |
+
.stButton>button {
|
| 146 |
+
background: var(--gradient-primary) !important;
|
| 147 |
+
color: white !important;
|
| 148 |
+
border: none !important;
|
| 149 |
+
border-radius: 8px !important;
|
| 150 |
+
padding: 10px 20px !important;
|
| 151 |
+
font-weight: 600;
|
| 152 |
+
font-size: 0.9rem;
|
| 153 |
+
letter-spacing: 0.02em;
|
| 154 |
+
transition: all 0.2s ease !important;
|
| 155 |
+
box-shadow:
|
| 156 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.2),
|
| 157 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.1);
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
.stButton>button:hover {
|
| 161 |
+
transform: translateY(-2px);
|
| 162 |
+
box-shadow:
|
| 163 |
+
0 6px 10px -1px rgba(59, 130, 246, 0.25),
|
| 164 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.15);
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
.stButton>button:active {
|
| 168 |
+
transform: translateY(0);
|
| 169 |
+
box-shadow:
|
| 170 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.2),
|
| 171 |
+
0 1px 2px -1px rgba(59, 130, 246, 0.1);
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
/* Improved Slider */
|
| 175 |
+
.stSlider {
|
| 176 |
+
margin-top: 12px;
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
.stSlider > div > div > div {
|
| 180 |
+
background-color: #CBD5E1 !important;
|
| 181 |
+
height: 6px !important;
|
| 182 |
+
border-radius: 3px !important;
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
.stSlider > div > div > div > div {
|
| 186 |
+
background: var(--primary-blue) !important;
|
| 187 |
+
box-shadow: 0 0 0 2px white, 0 0 0 3px rgba(59, 130, 246, 0.2) !important;
|
| 188 |
+
width: 18px !important;
|
| 189 |
+
height: 18px !important;
|
| 190 |
+
border-radius: 50% !important;
|
| 191 |
+
transition: transform 0.2s ease !important;
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
.stSlider > div > div > div > div:hover {
|
| 195 |
+
transform: scale(1.15) !important;
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
/* Progress Bar */
|
| 199 |
+
.stProgress > div > div > div {
|
| 200 |
+
background-color: var(--primary-blue) !important;
|
| 201 |
+
border-radius: 4px !important;
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
/* Select Boxes */
|
| 205 |
+
.stSelectbox label {
|
| 206 |
+
color: var(--text-medium) !important;
|
| 207 |
+
font-weight: 500 !important;
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
.stSelectbox > div > div > div {
|
| 211 |
+
background-color: white !important;
|
| 212 |
+
border: 1px solid rgba(59, 130, 246, 0.3) !important;
|
| 213 |
+
border-radius: 8px !important;
|
| 214 |
+
padding: 4px 8px !important;
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
/* Checkbox */
|
| 218 |
+
.stCheckbox label {
|
| 219 |
+
color: var(--text-medium) !important;
|
| 220 |
+
font-size: 0.95rem !important;
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
/* Tabs */
|
| 224 |
+
.stTabs [data-baseweb="tab-list"] {
|
| 225 |
+
gap: 2px;
|
| 226 |
+
background-color: rgba(59, 130, 246, 0.1) !important;
|
| 227 |
+
border-radius: 8px !important;
|
| 228 |
+
padding: 2px !important;
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
.stTabs [data-baseweb="tab"] {
|
| 232 |
+
background-color: transparent !important;
|
| 233 |
+
border-radius: 6px !important;
|
| 234 |
+
padding: 8px 16px !important;
|
| 235 |
+
border: none !important;
|
| 236 |
+
color: var(--text-medium) !important;
|
| 237 |
+
font-weight: 500 !important;
|
| 238 |
+
transition: all 0.2s ease !important;
|
| 239 |
+
}
|
| 240 |
+
|
| 241 |
+
.stTabs [aria-selected="true"] {
|
| 242 |
+
background-color: white !important;
|
| 243 |
+
color: var(--primary-blue) !important;
|
| 244 |
+
font-weight: 600 !important;
|
| 245 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
/* Info Boxes */
|
| 249 |
+
.info-box {
|
| 250 |
+
background-color: rgba(14, 165, 233, 0.1);
|
| 251 |
+
border-left: 3px solid var(--accent-teal);
|
| 252 |
+
border-radius: 6px;
|
| 253 |
+
padding: 15px;
|
| 254 |
+
margin: 15px 0;
|
| 255 |
+
color: var(--text-dark);
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
.success-box {
|
| 259 |
+
background-color: rgba(16, 185, 129, 0.1);
|
| 260 |
+
border-left: 3px solid var(--success-green);
|
| 261 |
+
border-radius: 6px;
|
| 262 |
+
padding: 15px;
|
| 263 |
+
margin: 15px 0;
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
.warning-box {
|
| 267 |
+
background-color: rgba(251, 191, 36, 0.1);
|
| 268 |
+
border-left: 3px solid var(--warning-yellow);
|
| 269 |
+
border-radius: 6px;
|
| 270 |
+
padding: 15px;
|
| 271 |
+
margin: 15px 0;
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
.error-box {
|
| 275 |
+
background-color: rgba(239, 68, 68, 0.1);
|
| 276 |
+
border-left: 3px solid var(--error-red);
|
| 277 |
+
border-radius: 6px;
|
| 278 |
+
padding: 15px;
|
| 279 |
+
margin: 15px 0;
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
/* Data Elements */
|
| 283 |
+
.metric-card {
|
| 284 |
+
background-color: white;
|
| 285 |
+
border-radius: 10px;
|
| 286 |
+
padding: 20px;
|
| 287 |
+
display: flex;
|
| 288 |
+
flex-direction: column;
|
| 289 |
+
align-items: center;
|
| 290 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05);
|
| 291 |
+
border-top: 3px solid var(--primary-blue);
|
| 292 |
+
}
|
| 293 |
+
|
| 294 |
+
.metric-value {
|
| 295 |
+
font-size: 2rem;
|
| 296 |
+
font-weight: 700;
|
| 297 |
+
color: var(--primary-blue);
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
.metric-label {
|
| 301 |
+
font-size: 0.9rem;
|
| 302 |
+
color: var(--text-medium);
|
| 303 |
+
margin-top: 5px;
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
/* Responsive Design */
|
| 307 |
+
@media (max-width: 768px) {
|
| 308 |
+
[data-testid="stAppViewContainer"] {
|
| 309 |
+
padding: 1.2rem;
|
| 310 |
+
border-radius: 12px;
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
.main-title {
|
| 314 |
+
font-size: 1.8rem;
|
| 315 |
+
}
|
| 316 |
+
|
| 317 |
+
.emotion-analysis, .task-input {
|
| 318 |
+
padding: 1.2rem;
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
.metric-value {
|
| 322 |
+
font-size: 1.6rem;
|
| 323 |
+
}
|
| 324 |
+
}
|
| 325 |
+
</style>
|
| 326 |
+
"""
|
test_results.csv
ADDED
|
@@ -0,0 +1,5428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
true_labels,predicted_labels
|
| 2 |
+
25,24
|
| 3 |
+
0,0
|
| 4 |
+
13,0
|
| 5 |
+
15,15
|
| 6 |
+
27,27
|
| 7 |
+
15,15
|
| 8 |
+
15,15
|
| 9 |
+
15,0
|
| 10 |
+
24,24
|
| 11 |
+
25,9
|
| 12 |
+
3,27
|
| 13 |
+
1,1
|
| 14 |
+
8,8
|
| 15 |
+
0,0
|
| 16 |
+
14,14
|
| 17 |
+
10,10
|
| 18 |
+
14,11
|
| 19 |
+
25,27
|
| 20 |
+
1,1
|
| 21 |
+
15,15
|
| 22 |
+
1,3
|
| 23 |
+
24,7
|
| 24 |
+
27,27
|
| 25 |
+
27,27
|
| 26 |
+
6,27
|
| 27 |
+
27,27
|
| 28 |
+
0,18
|
| 29 |
+
27,27
|
| 30 |
+
27,4
|
| 31 |
+
7,7
|
| 32 |
+
27,27
|
| 33 |
+
27,7
|
| 34 |
+
27,27
|
| 35 |
+
20,20
|
| 36 |
+
4,27
|
| 37 |
+
27,27
|
| 38 |
+
27,27
|
| 39 |
+
27,27
|
| 40 |
+
27,27
|
| 41 |
+
0,1
|
| 42 |
+
10,27
|
| 43 |
+
5,27
|
| 44 |
+
27,27
|
| 45 |
+
27,27
|
| 46 |
+
17,0
|
| 47 |
+
27,10
|
| 48 |
+
1,1
|
| 49 |
+
1,1
|
| 50 |
+
27,10
|
| 51 |
+
4,27
|
| 52 |
+
27,27
|
| 53 |
+
3,1
|
| 54 |
+
10,27
|
| 55 |
+
27,27
|
| 56 |
+
14,14
|
| 57 |
+
27,4
|
| 58 |
+
8,27
|
| 59 |
+
27,27
|
| 60 |
+
24,24
|
| 61 |
+
15,15
|
| 62 |
+
27,6
|
| 63 |
+
18,0
|
| 64 |
+
18,18
|
| 65 |
+
27,8
|
| 66 |
+
15,15
|
| 67 |
+
25,24
|
| 68 |
+
14,5
|
| 69 |
+
6,7
|
| 70 |
+
9,27
|
| 71 |
+
3,3
|
| 72 |
+
3,10
|
| 73 |
+
27,27
|
| 74 |
+
27,27
|
| 75 |
+
0,1
|
| 76 |
+
5,5
|
| 77 |
+
10,3
|
| 78 |
+
0,0
|
| 79 |
+
14,27
|
| 80 |
+
4,4
|
| 81 |
+
2,3
|
| 82 |
+
0,27
|
| 83 |
+
20,27
|
| 84 |
+
15,15
|
| 85 |
+
7,7
|
| 86 |
+
3,27
|
| 87 |
+
6,7
|
| 88 |
+
10,10
|
| 89 |
+
27,27
|
| 90 |
+
0,18
|
| 91 |
+
15,15
|
| 92 |
+
7,17
|
| 93 |
+
10,5
|
| 94 |
+
27,27
|
| 95 |
+
22,4
|
| 96 |
+
26,26
|
| 97 |
+
27,27
|
| 98 |
+
14,14
|
| 99 |
+
13,17
|
| 100 |
+
27,27
|
| 101 |
+
5,0
|
| 102 |
+
3,27
|
| 103 |
+
6,6
|
| 104 |
+
27,27
|
| 105 |
+
9,0
|
| 106 |
+
2,27
|
| 107 |
+
4,27
|
| 108 |
+
10,10
|
| 109 |
+
3,27
|
| 110 |
+
2,3
|
| 111 |
+
27,27
|
| 112 |
+
0,0
|
| 113 |
+
27,27
|
| 114 |
+
5,27
|
| 115 |
+
17,18
|
| 116 |
+
27,27
|
| 117 |
+
0,0
|
| 118 |
+
27,27
|
| 119 |
+
20,20
|
| 120 |
+
5,5
|
| 121 |
+
27,27
|
| 122 |
+
26,26
|
| 123 |
+
27,27
|
| 124 |
+
1,1
|
| 125 |
+
4,4
|
| 126 |
+
7,7
|
| 127 |
+
8,2
|
| 128 |
+
0,27
|
| 129 |
+
4,10
|
| 130 |
+
1,1
|
| 131 |
+
3,27
|
| 132 |
+
7,7
|
| 133 |
+
27,14
|
| 134 |
+
3,27
|
| 135 |
+
22,0
|
| 136 |
+
20,27
|
| 137 |
+
27,27
|
| 138 |
+
14,14
|
| 139 |
+
10,11
|
| 140 |
+
2,2
|
| 141 |
+
27,8
|
| 142 |
+
27,27
|
| 143 |
+
10,10
|
| 144 |
+
18,18
|
| 145 |
+
6,4
|
| 146 |
+
1,1
|
| 147 |
+
11,11
|
| 148 |
+
17,17
|
| 149 |
+
27,7
|
| 150 |
+
20,27
|
| 151 |
+
27,27
|
| 152 |
+
27,27
|
| 153 |
+
27,27
|
| 154 |
+
3,3
|
| 155 |
+
12,1
|
| 156 |
+
15,15
|
| 157 |
+
27,27
|
| 158 |
+
27,0
|
| 159 |
+
27,26
|
| 160 |
+
27,27
|
| 161 |
+
27,5
|
| 162 |
+
27,27
|
| 163 |
+
10,27
|
| 164 |
+
27,27
|
| 165 |
+
24,24
|
| 166 |
+
27,7
|
| 167 |
+
2,2
|
| 168 |
+
7,7
|
| 169 |
+
27,27
|
| 170 |
+
2,2
|
| 171 |
+
15,15
|
| 172 |
+
27,27
|
| 173 |
+
7,7
|
| 174 |
+
1,1
|
| 175 |
+
9,8
|
| 176 |
+
4,15
|
| 177 |
+
1,1
|
| 178 |
+
26,14
|
| 179 |
+
5,24
|
| 180 |
+
0,0
|
| 181 |
+
27,0
|
| 182 |
+
25,25
|
| 183 |
+
6,6
|
| 184 |
+
24,27
|
| 185 |
+
27,27
|
| 186 |
+
22,22
|
| 187 |
+
27,27
|
| 188 |
+
15,15
|
| 189 |
+
26,3
|
| 190 |
+
27,27
|
| 191 |
+
3,3
|
| 192 |
+
15,15
|
| 193 |
+
10,3
|
| 194 |
+
19,14
|
| 195 |
+
0,0
|
| 196 |
+
17,1
|
| 197 |
+
5,5
|
| 198 |
+
26,26
|
| 199 |
+
27,27
|
| 200 |
+
27,27
|
| 201 |
+
3,9
|
| 202 |
+
22,27
|
| 203 |
+
27,27
|
| 204 |
+
11,3
|
| 205 |
+
27,27
|
| 206 |
+
27,27
|
| 207 |
+
27,27
|
| 208 |
+
27,27
|
| 209 |
+
22,27
|
| 210 |
+
17,17
|
| 211 |
+
20,20
|
| 212 |
+
27,27
|
| 213 |
+
14,27
|
| 214 |
+
17,0
|
| 215 |
+
15,15
|
| 216 |
+
27,27
|
| 217 |
+
27,27
|
| 218 |
+
18,18
|
| 219 |
+
0,0
|
| 220 |
+
15,15
|
| 221 |
+
21,0
|
| 222 |
+
3,3
|
| 223 |
+
5,27
|
| 224 |
+
27,0
|
| 225 |
+
10,24
|
| 226 |
+
27,4
|
| 227 |
+
27,27
|
| 228 |
+
11,2
|
| 229 |
+
27,27
|
| 230 |
+
3,27
|
| 231 |
+
27,27
|
| 232 |
+
4,4
|
| 233 |
+
3,3
|
| 234 |
+
27,27
|
| 235 |
+
27,27
|
| 236 |
+
0,0
|
| 237 |
+
27,27
|
| 238 |
+
27,26
|
| 239 |
+
27,27
|
| 240 |
+
27,27
|
| 241 |
+
27,27
|
| 242 |
+
27,27
|
| 243 |
+
12,12
|
| 244 |
+
18,18
|
| 245 |
+
27,27
|
| 246 |
+
3,27
|
| 247 |
+
27,27
|
| 248 |
+
11,2
|
| 249 |
+
0,0
|
| 250 |
+
27,27
|
| 251 |
+
25,27
|
| 252 |
+
14,14
|
| 253 |
+
27,27
|
| 254 |
+
9,10
|
| 255 |
+
6,6
|
| 256 |
+
27,8
|
| 257 |
+
25,25
|
| 258 |
+
2,3
|
| 259 |
+
27,4
|
| 260 |
+
27,27
|
| 261 |
+
2,3
|
| 262 |
+
10,10
|
| 263 |
+
7,7
|
| 264 |
+
27,27
|
| 265 |
+
14,14
|
| 266 |
+
8,8
|
| 267 |
+
22,27
|
| 268 |
+
9,9
|
| 269 |
+
11,11
|
| 270 |
+
15,15
|
| 271 |
+
4,4
|
| 272 |
+
15,15
|
| 273 |
+
11,9
|
| 274 |
+
24,24
|
| 275 |
+
1,1
|
| 276 |
+
8,14
|
| 277 |
+
27,27
|
| 278 |
+
27,27
|
| 279 |
+
27,27
|
| 280 |
+
0,0
|
| 281 |
+
14,25
|
| 282 |
+
1,1
|
| 283 |
+
27,27
|
| 284 |
+
11,11
|
| 285 |
+
5,27
|
| 286 |
+
27,27
|
| 287 |
+
0,17
|
| 288 |
+
0,0
|
| 289 |
+
11,2
|
| 290 |
+
27,27
|
| 291 |
+
27,27
|
| 292 |
+
7,7
|
| 293 |
+
26,7
|
| 294 |
+
27,27
|
| 295 |
+
20,26
|
| 296 |
+
15,15
|
| 297 |
+
6,6
|
| 298 |
+
27,27
|
| 299 |
+
5,27
|
| 300 |
+
27,27
|
| 301 |
+
27,27
|
| 302 |
+
7,7
|
| 303 |
+
6,18
|
| 304 |
+
27,27
|
| 305 |
+
27,5
|
| 306 |
+
9,27
|
| 307 |
+
27,11
|
| 308 |
+
26,27
|
| 309 |
+
7,12
|
| 310 |
+
22,27
|
| 311 |
+
7,7
|
| 312 |
+
18,18
|
| 313 |
+
27,7
|
| 314 |
+
27,27
|
| 315 |
+
27,27
|
| 316 |
+
0,0
|
| 317 |
+
3,7
|
| 318 |
+
5,5
|
| 319 |
+
27,27
|
| 320 |
+
27,27
|
| 321 |
+
11,11
|
| 322 |
+
15,15
|
| 323 |
+
0,0
|
| 324 |
+
27,27
|
| 325 |
+
27,27
|
| 326 |
+
10,10
|
| 327 |
+
0,4
|
| 328 |
+
1,1
|
| 329 |
+
10,10
|
| 330 |
+
26,26
|
| 331 |
+
15,15
|
| 332 |
+
27,27
|
| 333 |
+
0,0
|
| 334 |
+
2,11
|
| 335 |
+
27,2
|
| 336 |
+
27,27
|
| 337 |
+
8,20
|
| 338 |
+
14,14
|
| 339 |
+
8,18
|
| 340 |
+
0,0
|
| 341 |
+
4,18
|
| 342 |
+
15,15
|
| 343 |
+
8,17
|
| 344 |
+
1,0
|
| 345 |
+
15,15
|
| 346 |
+
10,9
|
| 347 |
+
27,27
|
| 348 |
+
2,2
|
| 349 |
+
27,2
|
| 350 |
+
27,7
|
| 351 |
+
1,1
|
| 352 |
+
1,1
|
| 353 |
+
27,27
|
| 354 |
+
13,27
|
| 355 |
+
25,26
|
| 356 |
+
0,0
|
| 357 |
+
27,27
|
| 358 |
+
3,27
|
| 359 |
+
6,7
|
| 360 |
+
27,27
|
| 361 |
+
27,27
|
| 362 |
+
5,27
|
| 363 |
+
15,15
|
| 364 |
+
5,20
|
| 365 |
+
3,27
|
| 366 |
+
8,8
|
| 367 |
+
13,15
|
| 368 |
+
27,27
|
| 369 |
+
7,27
|
| 370 |
+
10,10
|
| 371 |
+
9,2
|
| 372 |
+
5,27
|
| 373 |
+
2,2
|
| 374 |
+
27,27
|
| 375 |
+
2,27
|
| 376 |
+
1,1
|
| 377 |
+
27,10
|
| 378 |
+
26,3
|
| 379 |
+
27,26
|
| 380 |
+
25,26
|
| 381 |
+
27,27
|
| 382 |
+
15,15
|
| 383 |
+
10,27
|
| 384 |
+
27,27
|
| 385 |
+
2,2
|
| 386 |
+
0,0
|
| 387 |
+
1,1
|
| 388 |
+
1,1
|
| 389 |
+
25,25
|
| 390 |
+
3,7
|
| 391 |
+
27,27
|
| 392 |
+
17,17
|
| 393 |
+
3,2
|
| 394 |
+
27,0
|
| 395 |
+
27,2
|
| 396 |
+
13,13
|
| 397 |
+
10,27
|
| 398 |
+
15,17
|
| 399 |
+
27,27
|
| 400 |
+
27,27
|
| 401 |
+
4,27
|
| 402 |
+
7,17
|
| 403 |
+
4,10
|
| 404 |
+
4,27
|
| 405 |
+
2,3
|
| 406 |
+
4,27
|
| 407 |
+
27,7
|
| 408 |
+
0,27
|
| 409 |
+
17,27
|
| 410 |
+
3,27
|
| 411 |
+
27,27
|
| 412 |
+
10,10
|
| 413 |
+
11,11
|
| 414 |
+
13,0
|
| 415 |
+
5,18
|
| 416 |
+
27,27
|
| 417 |
+
27,27
|
| 418 |
+
27,8
|
| 419 |
+
4,27
|
| 420 |
+
6,7
|
| 421 |
+
4,2
|
| 422 |
+
24,24
|
| 423 |
+
20,20
|
| 424 |
+
6,6
|
| 425 |
+
3,27
|
| 426 |
+
27,27
|
| 427 |
+
13,13
|
| 428 |
+
27,27
|
| 429 |
+
0,0
|
| 430 |
+
27,27
|
| 431 |
+
27,27
|
| 432 |
+
0,0
|
| 433 |
+
27,27
|
| 434 |
+
24,24
|
| 435 |
+
27,27
|
| 436 |
+
0,0
|
| 437 |
+
9,25
|
| 438 |
+
10,27
|
| 439 |
+
27,27
|
| 440 |
+
24,24
|
| 441 |
+
27,27
|
| 442 |
+
27,27
|
| 443 |
+
10,11
|
| 444 |
+
8,27
|
| 445 |
+
3,10
|
| 446 |
+
0,0
|
| 447 |
+
7,6
|
| 448 |
+
12,12
|
| 449 |
+
4,20
|
| 450 |
+
4,6
|
| 451 |
+
22,27
|
| 452 |
+
26,26
|
| 453 |
+
8,25
|
| 454 |
+
20,20
|
| 455 |
+
15,15
|
| 456 |
+
8,8
|
| 457 |
+
27,27
|
| 458 |
+
4,4
|
| 459 |
+
20,20
|
| 460 |
+
27,27
|
| 461 |
+
18,7
|
| 462 |
+
27,7
|
| 463 |
+
4,7
|
| 464 |
+
27,27
|
| 465 |
+
3,3
|
| 466 |
+
2,3
|
| 467 |
+
18,18
|
| 468 |
+
7,7
|
| 469 |
+
10,27
|
| 470 |
+
1,1
|
| 471 |
+
2,2
|
| 472 |
+
4,27
|
| 473 |
+
15,15
|
| 474 |
+
5,27
|
| 475 |
+
0,1
|
| 476 |
+
27,27
|
| 477 |
+
7,7
|
| 478 |
+
27,27
|
| 479 |
+
15,15
|
| 480 |
+
15,15
|
| 481 |
+
7,26
|
| 482 |
+
0,18
|
| 483 |
+
10,27
|
| 484 |
+
10,6
|
| 485 |
+
17,1
|
| 486 |
+
3,3
|
| 487 |
+
27,27
|
| 488 |
+
27,27
|
| 489 |
+
27,27
|
| 490 |
+
27,8
|
| 491 |
+
10,10
|
| 492 |
+
7,27
|
| 493 |
+
27,27
|
| 494 |
+
18,0
|
| 495 |
+
27,27
|
| 496 |
+
2,2
|
| 497 |
+
27,27
|
| 498 |
+
22,27
|
| 499 |
+
7,7
|
| 500 |
+
27,27
|
| 501 |
+
4,4
|
| 502 |
+
18,18
|
| 503 |
+
5,15
|
| 504 |
+
9,9
|
| 505 |
+
3,14
|
| 506 |
+
2,2
|
| 507 |
+
2,2
|
| 508 |
+
27,27
|
| 509 |
+
14,14
|
| 510 |
+
6,15
|
| 511 |
+
10,7
|
| 512 |
+
27,27
|
| 513 |
+
20,27
|
| 514 |
+
10,10
|
| 515 |
+
27,27
|
| 516 |
+
27,27
|
| 517 |
+
0,20
|
| 518 |
+
6,7
|
| 519 |
+
27,27
|
| 520 |
+
27,22
|
| 521 |
+
27,27
|
| 522 |
+
15,15
|
| 523 |
+
27,27
|
| 524 |
+
27,27
|
| 525 |
+
15,15
|
| 526 |
+
3,27
|
| 527 |
+
27,27
|
| 528 |
+
0,0
|
| 529 |
+
2,2
|
| 530 |
+
18,18
|
| 531 |
+
27,27
|
| 532 |
+
27,27
|
| 533 |
+
17,0
|
| 534 |
+
25,25
|
| 535 |
+
7,7
|
| 536 |
+
5,5
|
| 537 |
+
27,27
|
| 538 |
+
0,0
|
| 539 |
+
4,27
|
| 540 |
+
2,2
|
| 541 |
+
3,27
|
| 542 |
+
27,27
|
| 543 |
+
2,27
|
| 544 |
+
27,27
|
| 545 |
+
8,27
|
| 546 |
+
20,27
|
| 547 |
+
0,0
|
| 548 |
+
0,15
|
| 549 |
+
17,14
|
| 550 |
+
22,27
|
| 551 |
+
0,0
|
| 552 |
+
25,26
|
| 553 |
+
11,3
|
| 554 |
+
1,0
|
| 555 |
+
27,27
|
| 556 |
+
10,2
|
| 557 |
+
7,7
|
| 558 |
+
27,4
|
| 559 |
+
4,18
|
| 560 |
+
15,15
|
| 561 |
+
5,8
|
| 562 |
+
9,14
|
| 563 |
+
15,15
|
| 564 |
+
3,7
|
| 565 |
+
25,25
|
| 566 |
+
15,15
|
| 567 |
+
15,15
|
| 568 |
+
10,11
|
| 569 |
+
27,7
|
| 570 |
+
10,10
|
| 571 |
+
11,11
|
| 572 |
+
27,27
|
| 573 |
+
2,2
|
| 574 |
+
25,27
|
| 575 |
+
27,27
|
| 576 |
+
22,27
|
| 577 |
+
2,2
|
| 578 |
+
4,0
|
| 579 |
+
10,27
|
| 580 |
+
0,0
|
| 581 |
+
1,1
|
| 582 |
+
10,27
|
| 583 |
+
20,20
|
| 584 |
+
6,6
|
| 585 |
+
18,18
|
| 586 |
+
0,27
|
| 587 |
+
4,17
|
| 588 |
+
3,27
|
| 589 |
+
11,11
|
| 590 |
+
4,27
|
| 591 |
+
18,18
|
| 592 |
+
27,27
|
| 593 |
+
27,27
|
| 594 |
+
27,27
|
| 595 |
+
1,0
|
| 596 |
+
27,27
|
| 597 |
+
3,27
|
| 598 |
+
20,20
|
| 599 |
+
3,27
|
| 600 |
+
27,27
|
| 601 |
+
15,15
|
| 602 |
+
0,27
|
| 603 |
+
27,27
|
| 604 |
+
24,25
|
| 605 |
+
0,0
|
| 606 |
+
15,15
|
| 607 |
+
2,27
|
| 608 |
+
27,27
|
| 609 |
+
3,2
|
| 610 |
+
7,7
|
| 611 |
+
27,27
|
| 612 |
+
27,14
|
| 613 |
+
27,27
|
| 614 |
+
15,15
|
| 615 |
+
15,15
|
| 616 |
+
27,27
|
| 617 |
+
15,15
|
| 618 |
+
27,27
|
| 619 |
+
12,12
|
| 620 |
+
15,15
|
| 621 |
+
20,27
|
| 622 |
+
6,6
|
| 623 |
+
13,13
|
| 624 |
+
9,27
|
| 625 |
+
10,10
|
| 626 |
+
27,27
|
| 627 |
+
0,0
|
| 628 |
+
2,27
|
| 629 |
+
0,0
|
| 630 |
+
0,0
|
| 631 |
+
10,10
|
| 632 |
+
20,27
|
| 633 |
+
11,2
|
| 634 |
+
14,14
|
| 635 |
+
0,0
|
| 636 |
+
3,2
|
| 637 |
+
4,4
|
| 638 |
+
0,0
|
| 639 |
+
6,9
|
| 640 |
+
9,3
|
| 641 |
+
25,27
|
| 642 |
+
15,20
|
| 643 |
+
14,14
|
| 644 |
+
10,10
|
| 645 |
+
27,3
|
| 646 |
+
27,0
|
| 647 |
+
27,27
|
| 648 |
+
7,7
|
| 649 |
+
27,27
|
| 650 |
+
20,20
|
| 651 |
+
13,13
|
| 652 |
+
27,27
|
| 653 |
+
27,4
|
| 654 |
+
0,27
|
| 655 |
+
10,10
|
| 656 |
+
6,27
|
| 657 |
+
27,27
|
| 658 |
+
25,14
|
| 659 |
+
4,4
|
| 660 |
+
14,14
|
| 661 |
+
27,27
|
| 662 |
+
18,18
|
| 663 |
+
25,3
|
| 664 |
+
9,9
|
| 665 |
+
3,27
|
| 666 |
+
27,27
|
| 667 |
+
27,27
|
| 668 |
+
27,27
|
| 669 |
+
27,27
|
| 670 |
+
15,15
|
| 671 |
+
2,2
|
| 672 |
+
22,1
|
| 673 |
+
0,0
|
| 674 |
+
2,11
|
| 675 |
+
3,27
|
| 676 |
+
18,18
|
| 677 |
+
0,0
|
| 678 |
+
7,26
|
| 679 |
+
18,18
|
| 680 |
+
3,27
|
| 681 |
+
10,10
|
| 682 |
+
4,27
|
| 683 |
+
4,4
|
| 684 |
+
0,1
|
| 685 |
+
17,17
|
| 686 |
+
27,27
|
| 687 |
+
3,3
|
| 688 |
+
25,5
|
| 689 |
+
27,24
|
| 690 |
+
15,15
|
| 691 |
+
18,18
|
| 692 |
+
5,15
|
| 693 |
+
0,0
|
| 694 |
+
27,27
|
| 695 |
+
3,27
|
| 696 |
+
15,15
|
| 697 |
+
4,4
|
| 698 |
+
27,18
|
| 699 |
+
7,7
|
| 700 |
+
11,11
|
| 701 |
+
0,8
|
| 702 |
+
0,27
|
| 703 |
+
15,15
|
| 704 |
+
22,27
|
| 705 |
+
10,10
|
| 706 |
+
11,27
|
| 707 |
+
27,27
|
| 708 |
+
27,7
|
| 709 |
+
27,0
|
| 710 |
+
23,25
|
| 711 |
+
22,27
|
| 712 |
+
2,2
|
| 713 |
+
27,3
|
| 714 |
+
27,27
|
| 715 |
+
27,27
|
| 716 |
+
22,26
|
| 717 |
+
14,14
|
| 718 |
+
18,18
|
| 719 |
+
7,14
|
| 720 |
+
0,0
|
| 721 |
+
0,0
|
| 722 |
+
27,27
|
| 723 |
+
7,7
|
| 724 |
+
4,4
|
| 725 |
+
17,17
|
| 726 |
+
7,7
|
| 727 |
+
27,27
|
| 728 |
+
0,27
|
| 729 |
+
27,27
|
| 730 |
+
27,27
|
| 731 |
+
0,0
|
| 732 |
+
1,1
|
| 733 |
+
27,3
|
| 734 |
+
15,15
|
| 735 |
+
7,6
|
| 736 |
+
27,7
|
| 737 |
+
27,27
|
| 738 |
+
25,24
|
| 739 |
+
0,0
|
| 740 |
+
1,1
|
| 741 |
+
27,3
|
| 742 |
+
27,0
|
| 743 |
+
27,18
|
| 744 |
+
1,1
|
| 745 |
+
27,27
|
| 746 |
+
17,17
|
| 747 |
+
0,0
|
| 748 |
+
27,27
|
| 749 |
+
27,6
|
| 750 |
+
0,0
|
| 751 |
+
27,27
|
| 752 |
+
27,27
|
| 753 |
+
2,15
|
| 754 |
+
7,7
|
| 755 |
+
15,0
|
| 756 |
+
3,3
|
| 757 |
+
17,1
|
| 758 |
+
0,27
|
| 759 |
+
27,27
|
| 760 |
+
27,4
|
| 761 |
+
17,1
|
| 762 |
+
27,27
|
| 763 |
+
27,27
|
| 764 |
+
27,27
|
| 765 |
+
27,0
|
| 766 |
+
15,0
|
| 767 |
+
19,25
|
| 768 |
+
0,0
|
| 769 |
+
9,6
|
| 770 |
+
27,27
|
| 771 |
+
9,9
|
| 772 |
+
4,4
|
| 773 |
+
27,27
|
| 774 |
+
16,27
|
| 775 |
+
27,3
|
| 776 |
+
27,0
|
| 777 |
+
15,0
|
| 778 |
+
0,0
|
| 779 |
+
27,27
|
| 780 |
+
27,27
|
| 781 |
+
2,2
|
| 782 |
+
27,27
|
| 783 |
+
27,2
|
| 784 |
+
20,20
|
| 785 |
+
17,20
|
| 786 |
+
17,17
|
| 787 |
+
11,3
|
| 788 |
+
27,27
|
| 789 |
+
25,8
|
| 790 |
+
20,20
|
| 791 |
+
15,15
|
| 792 |
+
0,0
|
| 793 |
+
13,0
|
| 794 |
+
27,9
|
| 795 |
+
7,27
|
| 796 |
+
26,26
|
| 797 |
+
27,1
|
| 798 |
+
25,27
|
| 799 |
+
27,2
|
| 800 |
+
22,27
|
| 801 |
+
10,10
|
| 802 |
+
3,27
|
| 803 |
+
2,2
|
| 804 |
+
15,15
|
| 805 |
+
4,27
|
| 806 |
+
5,27
|
| 807 |
+
27,27
|
| 808 |
+
27,1
|
| 809 |
+
3,3
|
| 810 |
+
3,27
|
| 811 |
+
15,15
|
| 812 |
+
10,10
|
| 813 |
+
27,27
|
| 814 |
+
27,27
|
| 815 |
+
27,27
|
| 816 |
+
8,27
|
| 817 |
+
0,27
|
| 818 |
+
5,5
|
| 819 |
+
8,8
|
| 820 |
+
1,1
|
| 821 |
+
27,27
|
| 822 |
+
17,17
|
| 823 |
+
5,5
|
| 824 |
+
3,27
|
| 825 |
+
12,27
|
| 826 |
+
11,1
|
| 827 |
+
23,0
|
| 828 |
+
10,10
|
| 829 |
+
27,27
|
| 830 |
+
27,27
|
| 831 |
+
6,6
|
| 832 |
+
27,27
|
| 833 |
+
7,7
|
| 834 |
+
0,0
|
| 835 |
+
0,0
|
| 836 |
+
1,1
|
| 837 |
+
14,14
|
| 838 |
+
17,5
|
| 839 |
+
1,1
|
| 840 |
+
8,8
|
| 841 |
+
24,24
|
| 842 |
+
22,27
|
| 843 |
+
0,15
|
| 844 |
+
26,26
|
| 845 |
+
11,11
|
| 846 |
+
0,27
|
| 847 |
+
4,27
|
| 848 |
+
5,5
|
| 849 |
+
0,0
|
| 850 |
+
27,27
|
| 851 |
+
1,1
|
| 852 |
+
15,7
|
| 853 |
+
5,14
|
| 854 |
+
15,15
|
| 855 |
+
11,1
|
| 856 |
+
27,27
|
| 857 |
+
2,27
|
| 858 |
+
23,4
|
| 859 |
+
15,15
|
| 860 |
+
15,15
|
| 861 |
+
17,25
|
| 862 |
+
27,20
|
| 863 |
+
3,27
|
| 864 |
+
27,27
|
| 865 |
+
27,27
|
| 866 |
+
23,27
|
| 867 |
+
15,15
|
| 868 |
+
27,0
|
| 869 |
+
27,27
|
| 870 |
+
27,25
|
| 871 |
+
20,8
|
| 872 |
+
15,15
|
| 873 |
+
0,13
|
| 874 |
+
27,27
|
| 875 |
+
27,24
|
| 876 |
+
27,27
|
| 877 |
+
27,27
|
| 878 |
+
0,0
|
| 879 |
+
15,15
|
| 880 |
+
25,25
|
| 881 |
+
27,27
|
| 882 |
+
4,5
|
| 883 |
+
15,15
|
| 884 |
+
15,15
|
| 885 |
+
27,26
|
| 886 |
+
7,6
|
| 887 |
+
17,17
|
| 888 |
+
1,1
|
| 889 |
+
13,27
|
| 890 |
+
6,6
|
| 891 |
+
15,15
|
| 892 |
+
3,3
|
| 893 |
+
27,26
|
| 894 |
+
22,27
|
| 895 |
+
27,27
|
| 896 |
+
27,27
|
| 897 |
+
27,27
|
| 898 |
+
27,27
|
| 899 |
+
10,27
|
| 900 |
+
20,20
|
| 901 |
+
2,27
|
| 902 |
+
27,27
|
| 903 |
+
27,1
|
| 904 |
+
0,0
|
| 905 |
+
6,7
|
| 906 |
+
14,27
|
| 907 |
+
27,27
|
| 908 |
+
1,0
|
| 909 |
+
4,4
|
| 910 |
+
4,27
|
| 911 |
+
15,15
|
| 912 |
+
27,10
|
| 913 |
+
12,9
|
| 914 |
+
10,27
|
| 915 |
+
7,26
|
| 916 |
+
1,1
|
| 917 |
+
26,26
|
| 918 |
+
18,18
|
| 919 |
+
7,7
|
| 920 |
+
25,24
|
| 921 |
+
27,27
|
| 922 |
+
18,18
|
| 923 |
+
9,27
|
| 924 |
+
1,0
|
| 925 |
+
15,15
|
| 926 |
+
27,27
|
| 927 |
+
2,27
|
| 928 |
+
27,27
|
| 929 |
+
27,7
|
| 930 |
+
4,0
|
| 931 |
+
20,20
|
| 932 |
+
27,13
|
| 933 |
+
27,27
|
| 934 |
+
0,0
|
| 935 |
+
9,27
|
| 936 |
+
15,15
|
| 937 |
+
27,10
|
| 938 |
+
10,9
|
| 939 |
+
22,26
|
| 940 |
+
25,27
|
| 941 |
+
15,15
|
| 942 |
+
19,14
|
| 943 |
+
4,4
|
| 944 |
+
27,27
|
| 945 |
+
5,17
|
| 946 |
+
2,2
|
| 947 |
+
5,18
|
| 948 |
+
8,8
|
| 949 |
+
27,27
|
| 950 |
+
15,15
|
| 951 |
+
0,0
|
| 952 |
+
27,27
|
| 953 |
+
11,9
|
| 954 |
+
2,3
|
| 955 |
+
25,24
|
| 956 |
+
3,27
|
| 957 |
+
27,27
|
| 958 |
+
27,27
|
| 959 |
+
0,0
|
| 960 |
+
4,4
|
| 961 |
+
13,17
|
| 962 |
+
3,27
|
| 963 |
+
7,7
|
| 964 |
+
4,4
|
| 965 |
+
1,1
|
| 966 |
+
5,5
|
| 967 |
+
1,1
|
| 968 |
+
3,27
|
| 969 |
+
4,7
|
| 970 |
+
25,27
|
| 971 |
+
27,27
|
| 972 |
+
27,25
|
| 973 |
+
5,5
|
| 974 |
+
12,12
|
| 975 |
+
1,1
|
| 976 |
+
4,4
|
| 977 |
+
0,0
|
| 978 |
+
1,1
|
| 979 |
+
0,27
|
| 980 |
+
27,27
|
| 981 |
+
27,27
|
| 982 |
+
8,27
|
| 983 |
+
27,27
|
| 984 |
+
13,13
|
| 985 |
+
2,1
|
| 986 |
+
27,27
|
| 987 |
+
1,10
|
| 988 |
+
27,27
|
| 989 |
+
7,7
|
| 990 |
+
20,20
|
| 991 |
+
27,4
|
| 992 |
+
27,4
|
| 993 |
+
20,20
|
| 994 |
+
14,14
|
| 995 |
+
3,27
|
| 996 |
+
2,27
|
| 997 |
+
10,10
|
| 998 |
+
15,15
|
| 999 |
+
27,7
|
| 1000 |
+
0,0
|
| 1001 |
+
0,0
|
| 1002 |
+
18,18
|
| 1003 |
+
27,10
|
| 1004 |
+
4,27
|
| 1005 |
+
4,0
|
| 1006 |
+
7,27
|
| 1007 |
+
18,18
|
| 1008 |
+
14,3
|
| 1009 |
+
1,1
|
| 1010 |
+
4,27
|
| 1011 |
+
18,18
|
| 1012 |
+
15,15
|
| 1013 |
+
15,15
|
| 1014 |
+
27,27
|
| 1015 |
+
11,3
|
| 1016 |
+
4,27
|
| 1017 |
+
26,7
|
| 1018 |
+
27,27
|
| 1019 |
+
27,27
|
| 1020 |
+
1,7
|
| 1021 |
+
15,0
|
| 1022 |
+
27,27
|
| 1023 |
+
27,27
|
| 1024 |
+
15,15
|
| 1025 |
+
4,4
|
| 1026 |
+
27,27
|
| 1027 |
+
27,7
|
| 1028 |
+
7,7
|
| 1029 |
+
27,27
|
| 1030 |
+
27,27
|
| 1031 |
+
10,27
|
| 1032 |
+
18,4
|
| 1033 |
+
7,7
|
| 1034 |
+
27,27
|
| 1035 |
+
27,10
|
| 1036 |
+
2,7
|
| 1037 |
+
9,20
|
| 1038 |
+
1,1
|
| 1039 |
+
20,4
|
| 1040 |
+
27,27
|
| 1041 |
+
27,27
|
| 1042 |
+
27,27
|
| 1043 |
+
15,15
|
| 1044 |
+
7,5
|
| 1045 |
+
0,0
|
| 1046 |
+
18,18
|
| 1047 |
+
27,7
|
| 1048 |
+
24,17
|
| 1049 |
+
3,10
|
| 1050 |
+
2,3
|
| 1051 |
+
0,17
|
| 1052 |
+
27,15
|
| 1053 |
+
4,4
|
| 1054 |
+
3,27
|
| 1055 |
+
20,27
|
| 1056 |
+
27,27
|
| 1057 |
+
27,27
|
| 1058 |
+
6,7
|
| 1059 |
+
27,27
|
| 1060 |
+
3,27
|
| 1061 |
+
4,27
|
| 1062 |
+
1,27
|
| 1063 |
+
0,15
|
| 1064 |
+
3,27
|
| 1065 |
+
14,1
|
| 1066 |
+
10,27
|
| 1067 |
+
24,24
|
| 1068 |
+
0,27
|
| 1069 |
+
27,27
|
| 1070 |
+
10,10
|
| 1071 |
+
15,15
|
| 1072 |
+
3,10
|
| 1073 |
+
20,20
|
| 1074 |
+
27,27
|
| 1075 |
+
0,0
|
| 1076 |
+
27,6
|
| 1077 |
+
2,27
|
| 1078 |
+
27,27
|
| 1079 |
+
27,27
|
| 1080 |
+
17,18
|
| 1081 |
+
6,27
|
| 1082 |
+
27,27
|
| 1083 |
+
0,0
|
| 1084 |
+
18,18
|
| 1085 |
+
26,6
|
| 1086 |
+
2,7
|
| 1087 |
+
27,27
|
| 1088 |
+
27,27
|
| 1089 |
+
25,25
|
| 1090 |
+
3,3
|
| 1091 |
+
1,1
|
| 1092 |
+
26,26
|
| 1093 |
+
27,27
|
| 1094 |
+
27,27
|
| 1095 |
+
3,27
|
| 1096 |
+
0,0
|
| 1097 |
+
27,27
|
| 1098 |
+
15,15
|
| 1099 |
+
17,17
|
| 1100 |
+
4,4
|
| 1101 |
+
25,27
|
| 1102 |
+
27,27
|
| 1103 |
+
10,6
|
| 1104 |
+
15,15
|
| 1105 |
+
27,27
|
| 1106 |
+
0,17
|
| 1107 |
+
27,6
|
| 1108 |
+
11,14
|
| 1109 |
+
4,0
|
| 1110 |
+
0,0
|
| 1111 |
+
18,27
|
| 1112 |
+
27,27
|
| 1113 |
+
18,8
|
| 1114 |
+
5,5
|
| 1115 |
+
27,27
|
| 1116 |
+
10,27
|
| 1117 |
+
27,27
|
| 1118 |
+
17,17
|
| 1119 |
+
2,14
|
| 1120 |
+
0,0
|
| 1121 |
+
0,0
|
| 1122 |
+
27,27
|
| 1123 |
+
17,27
|
| 1124 |
+
27,27
|
| 1125 |
+
0,0
|
| 1126 |
+
3,27
|
| 1127 |
+
27,27
|
| 1128 |
+
27,27
|
| 1129 |
+
7,27
|
| 1130 |
+
3,3
|
| 1131 |
+
18,18
|
| 1132 |
+
13,13
|
| 1133 |
+
1,1
|
| 1134 |
+
3,4
|
| 1135 |
+
0,0
|
| 1136 |
+
11,27
|
| 1137 |
+
27,27
|
| 1138 |
+
1,1
|
| 1139 |
+
0,0
|
| 1140 |
+
13,27
|
| 1141 |
+
26,26
|
| 1142 |
+
27,27
|
| 1143 |
+
20,20
|
| 1144 |
+
27,27
|
| 1145 |
+
17,18
|
| 1146 |
+
0,0
|
| 1147 |
+
5,17
|
| 1148 |
+
4,27
|
| 1149 |
+
27,27
|
| 1150 |
+
26,27
|
| 1151 |
+
27,27
|
| 1152 |
+
17,0
|
| 1153 |
+
0,17
|
| 1154 |
+
25,27
|
| 1155 |
+
17,17
|
| 1156 |
+
6,7
|
| 1157 |
+
27,27
|
| 1158 |
+
27,27
|
| 1159 |
+
27,27
|
| 1160 |
+
0,0
|
| 1161 |
+
27,7
|
| 1162 |
+
15,15
|
| 1163 |
+
27,27
|
| 1164 |
+
0,0
|
| 1165 |
+
15,15
|
| 1166 |
+
27,27
|
| 1167 |
+
27,27
|
| 1168 |
+
27,27
|
| 1169 |
+
26,26
|
| 1170 |
+
1,17
|
| 1171 |
+
4,3
|
| 1172 |
+
12,27
|
| 1173 |
+
11,3
|
| 1174 |
+
27,27
|
| 1175 |
+
27,27
|
| 1176 |
+
0,18
|
| 1177 |
+
15,15
|
| 1178 |
+
1,1
|
| 1179 |
+
22,27
|
| 1180 |
+
22,24
|
| 1181 |
+
27,27
|
| 1182 |
+
3,20
|
| 1183 |
+
1,1
|
| 1184 |
+
3,27
|
| 1185 |
+
27,27
|
| 1186 |
+
4,0
|
| 1187 |
+
0,18
|
| 1188 |
+
1,7
|
| 1189 |
+
2,7
|
| 1190 |
+
9,14
|
| 1191 |
+
4,4
|
| 1192 |
+
1,1
|
| 1193 |
+
26,26
|
| 1194 |
+
27,27
|
| 1195 |
+
27,27
|
| 1196 |
+
4,27
|
| 1197 |
+
2,2
|
| 1198 |
+
27,0
|
| 1199 |
+
3,9
|
| 1200 |
+
1,1
|
| 1201 |
+
0,0
|
| 1202 |
+
0,0
|
| 1203 |
+
0,0
|
| 1204 |
+
0,0
|
| 1205 |
+
6,6
|
| 1206 |
+
4,27
|
| 1207 |
+
0,0
|
| 1208 |
+
7,7
|
| 1209 |
+
27,27
|
| 1210 |
+
27,27
|
| 1211 |
+
1,27
|
| 1212 |
+
22,27
|
| 1213 |
+
27,27
|
| 1214 |
+
10,27
|
| 1215 |
+
7,7
|
| 1216 |
+
27,27
|
| 1217 |
+
27,4
|
| 1218 |
+
27,0
|
| 1219 |
+
7,7
|
| 1220 |
+
27,3
|
| 1221 |
+
15,15
|
| 1222 |
+
18,18
|
| 1223 |
+
27,27
|
| 1224 |
+
19,27
|
| 1225 |
+
26,26
|
| 1226 |
+
27,27
|
| 1227 |
+
27,27
|
| 1228 |
+
11,11
|
| 1229 |
+
27,27
|
| 1230 |
+
24,1
|
| 1231 |
+
27,27
|
| 1232 |
+
10,27
|
| 1233 |
+
27,27
|
| 1234 |
+
27,27
|
| 1235 |
+
25,25
|
| 1236 |
+
18,10
|
| 1237 |
+
4,27
|
| 1238 |
+
20,8
|
| 1239 |
+
4,0
|
| 1240 |
+
27,27
|
| 1241 |
+
5,25
|
| 1242 |
+
27,0
|
| 1243 |
+
0,0
|
| 1244 |
+
27,27
|
| 1245 |
+
27,22
|
| 1246 |
+
22,22
|
| 1247 |
+
27,27
|
| 1248 |
+
7,7
|
| 1249 |
+
7,18
|
| 1250 |
+
10,27
|
| 1251 |
+
17,17
|
| 1252 |
+
5,5
|
| 1253 |
+
9,27
|
| 1254 |
+
27,10
|
| 1255 |
+
7,7
|
| 1256 |
+
27,6
|
| 1257 |
+
27,0
|
| 1258 |
+
2,26
|
| 1259 |
+
27,27
|
| 1260 |
+
0,0
|
| 1261 |
+
10,2
|
| 1262 |
+
1,1
|
| 1263 |
+
27,7
|
| 1264 |
+
27,27
|
| 1265 |
+
27,22
|
| 1266 |
+
0,0
|
| 1267 |
+
0,0
|
| 1268 |
+
18,27
|
| 1269 |
+
3,27
|
| 1270 |
+
11,26
|
| 1271 |
+
2,27
|
| 1272 |
+
25,11
|
| 1273 |
+
27,27
|
| 1274 |
+
27,27
|
| 1275 |
+
22,27
|
| 1276 |
+
3,3
|
| 1277 |
+
8,8
|
| 1278 |
+
7,6
|
| 1279 |
+
15,15
|
| 1280 |
+
6,7
|
| 1281 |
+
10,10
|
| 1282 |
+
0,0
|
| 1283 |
+
0,0
|
| 1284 |
+
0,18
|
| 1285 |
+
7,7
|
| 1286 |
+
17,27
|
| 1287 |
+
0,0
|
| 1288 |
+
1,1
|
| 1289 |
+
27,7
|
| 1290 |
+
8,27
|
| 1291 |
+
27,27
|
| 1292 |
+
20,20
|
| 1293 |
+
4,4
|
| 1294 |
+
11,11
|
| 1295 |
+
3,27
|
| 1296 |
+
19,9
|
| 1297 |
+
5,5
|
| 1298 |
+
27,27
|
| 1299 |
+
27,6
|
| 1300 |
+
4,27
|
| 1301 |
+
27,7
|
| 1302 |
+
27,7
|
| 1303 |
+
0,0
|
| 1304 |
+
7,27
|
| 1305 |
+
5,5
|
| 1306 |
+
27,27
|
| 1307 |
+
27,27
|
| 1308 |
+
4,1
|
| 1309 |
+
13,26
|
| 1310 |
+
3,11
|
| 1311 |
+
6,6
|
| 1312 |
+
8,18
|
| 1313 |
+
27,27
|
| 1314 |
+
27,27
|
| 1315 |
+
27,27
|
| 1316 |
+
14,14
|
| 1317 |
+
27,27
|
| 1318 |
+
6,3
|
| 1319 |
+
27,27
|
| 1320 |
+
26,27
|
| 1321 |
+
0,6
|
| 1322 |
+
3,27
|
| 1323 |
+
3,3
|
| 1324 |
+
0,0
|
| 1325 |
+
27,26
|
| 1326 |
+
5,5
|
| 1327 |
+
0,0
|
| 1328 |
+
27,25
|
| 1329 |
+
14,3
|
| 1330 |
+
4,10
|
| 1331 |
+
13,13
|
| 1332 |
+
4,4
|
| 1333 |
+
27,27
|
| 1334 |
+
4,4
|
| 1335 |
+
22,1
|
| 1336 |
+
27,3
|
| 1337 |
+
5,5
|
| 1338 |
+
2,2
|
| 1339 |
+
27,27
|
| 1340 |
+
27,27
|
| 1341 |
+
11,11
|
| 1342 |
+
15,15
|
| 1343 |
+
18,27
|
| 1344 |
+
0,0
|
| 1345 |
+
27,7
|
| 1346 |
+
4,27
|
| 1347 |
+
15,15
|
| 1348 |
+
27,27
|
| 1349 |
+
25,26
|
| 1350 |
+
3,3
|
| 1351 |
+
3,27
|
| 1352 |
+
18,18
|
| 1353 |
+
27,27
|
| 1354 |
+
3,27
|
| 1355 |
+
15,15
|
| 1356 |
+
20,20
|
| 1357 |
+
27,27
|
| 1358 |
+
10,6
|
| 1359 |
+
27,27
|
| 1360 |
+
12,11
|
| 1361 |
+
10,4
|
| 1362 |
+
13,13
|
| 1363 |
+
5,15
|
| 1364 |
+
3,10
|
| 1365 |
+
2,3
|
| 1366 |
+
0,0
|
| 1367 |
+
17,17
|
| 1368 |
+
3,2
|
| 1369 |
+
7,27
|
| 1370 |
+
25,25
|
| 1371 |
+
0,0
|
| 1372 |
+
27,27
|
| 1373 |
+
15,15
|
| 1374 |
+
9,27
|
| 1375 |
+
10,10
|
| 1376 |
+
11,11
|
| 1377 |
+
27,7
|
| 1378 |
+
27,27
|
| 1379 |
+
4,27
|
| 1380 |
+
27,27
|
| 1381 |
+
24,24
|
| 1382 |
+
6,7
|
| 1383 |
+
9,10
|
| 1384 |
+
7,1
|
| 1385 |
+
27,27
|
| 1386 |
+
27,7
|
| 1387 |
+
0,0
|
| 1388 |
+
6,27
|
| 1389 |
+
18,18
|
| 1390 |
+
27,27
|
| 1391 |
+
25,25
|
| 1392 |
+
27,2
|
| 1393 |
+
7,7
|
| 1394 |
+
7,27
|
| 1395 |
+
27,27
|
| 1396 |
+
27,27
|
| 1397 |
+
15,15
|
| 1398 |
+
5,27
|
| 1399 |
+
1,1
|
| 1400 |
+
27,6
|
| 1401 |
+
13,13
|
| 1402 |
+
7,20
|
| 1403 |
+
6,7
|
| 1404 |
+
15,15
|
| 1405 |
+
27,27
|
| 1406 |
+
27,7
|
| 1407 |
+
26,27
|
| 1408 |
+
1,1
|
| 1409 |
+
4,27
|
| 1410 |
+
13,7
|
| 1411 |
+
22,27
|
| 1412 |
+
27,27
|
| 1413 |
+
10,1
|
| 1414 |
+
18,18
|
| 1415 |
+
10,10
|
| 1416 |
+
26,0
|
| 1417 |
+
13,13
|
| 1418 |
+
4,27
|
| 1419 |
+
3,0
|
| 1420 |
+
27,9
|
| 1421 |
+
15,0
|
| 1422 |
+
8,8
|
| 1423 |
+
27,12
|
| 1424 |
+
3,2
|
| 1425 |
+
18,18
|
| 1426 |
+
0,0
|
| 1427 |
+
8,8
|
| 1428 |
+
1,26
|
| 1429 |
+
27,27
|
| 1430 |
+
10,27
|
| 1431 |
+
0,0
|
| 1432 |
+
0,0
|
| 1433 |
+
2,2
|
| 1434 |
+
4,27
|
| 1435 |
+
10,11
|
| 1436 |
+
7,7
|
| 1437 |
+
27,27
|
| 1438 |
+
0,0
|
| 1439 |
+
25,25
|
| 1440 |
+
26,2
|
| 1441 |
+
9,9
|
| 1442 |
+
27,7
|
| 1443 |
+
7,26
|
| 1444 |
+
27,27
|
| 1445 |
+
20,20
|
| 1446 |
+
27,27
|
| 1447 |
+
0,17
|
| 1448 |
+
3,27
|
| 1449 |
+
2,2
|
| 1450 |
+
27,27
|
| 1451 |
+
0,27
|
| 1452 |
+
7,7
|
| 1453 |
+
12,12
|
| 1454 |
+
5,5
|
| 1455 |
+
3,7
|
| 1456 |
+
2,2
|
| 1457 |
+
17,17
|
| 1458 |
+
15,0
|
| 1459 |
+
4,27
|
| 1460 |
+
0,0
|
| 1461 |
+
27,4
|
| 1462 |
+
27,27
|
| 1463 |
+
3,3
|
| 1464 |
+
9,9
|
| 1465 |
+
27,4
|
| 1466 |
+
27,27
|
| 1467 |
+
15,0
|
| 1468 |
+
7,7
|
| 1469 |
+
27,13
|
| 1470 |
+
18,18
|
| 1471 |
+
14,14
|
| 1472 |
+
27,7
|
| 1473 |
+
1,1
|
| 1474 |
+
18,18
|
| 1475 |
+
7,7
|
| 1476 |
+
10,10
|
| 1477 |
+
0,0
|
| 1478 |
+
4,0
|
| 1479 |
+
15,15
|
| 1480 |
+
15,15
|
| 1481 |
+
6,6
|
| 1482 |
+
4,4
|
| 1483 |
+
5,27
|
| 1484 |
+
27,0
|
| 1485 |
+
1,1
|
| 1486 |
+
27,27
|
| 1487 |
+
3,27
|
| 1488 |
+
27,10
|
| 1489 |
+
0,0
|
| 1490 |
+
17,17
|
| 1491 |
+
15,15
|
| 1492 |
+
0,5
|
| 1493 |
+
0,0
|
| 1494 |
+
27,3
|
| 1495 |
+
7,7
|
| 1496 |
+
4,4
|
| 1497 |
+
9,10
|
| 1498 |
+
10,24
|
| 1499 |
+
17,0
|
| 1500 |
+
11,11
|
| 1501 |
+
24,25
|
| 1502 |
+
2,2
|
| 1503 |
+
27,2
|
| 1504 |
+
27,27
|
| 1505 |
+
2,2
|
| 1506 |
+
10,27
|
| 1507 |
+
9,9
|
| 1508 |
+
2,3
|
| 1509 |
+
1,1
|
| 1510 |
+
19,27
|
| 1511 |
+
10,27
|
| 1512 |
+
10,18
|
| 1513 |
+
0,0
|
| 1514 |
+
10,10
|
| 1515 |
+
13,13
|
| 1516 |
+
25,4
|
| 1517 |
+
17,17
|
| 1518 |
+
1,1
|
| 1519 |
+
18,18
|
| 1520 |
+
22,27
|
| 1521 |
+
10,10
|
| 1522 |
+
15,1
|
| 1523 |
+
13,27
|
| 1524 |
+
14,27
|
| 1525 |
+
27,27
|
| 1526 |
+
27,27
|
| 1527 |
+
3,27
|
| 1528 |
+
26,26
|
| 1529 |
+
27,27
|
| 1530 |
+
3,5
|
| 1531 |
+
7,7
|
| 1532 |
+
0,0
|
| 1533 |
+
18,18
|
| 1534 |
+
3,27
|
| 1535 |
+
27,27
|
| 1536 |
+
27,27
|
| 1537 |
+
15,15
|
| 1538 |
+
9,2
|
| 1539 |
+
22,26
|
| 1540 |
+
18,18
|
| 1541 |
+
0,0
|
| 1542 |
+
0,0
|
| 1543 |
+
20,5
|
| 1544 |
+
22,27
|
| 1545 |
+
10,10
|
| 1546 |
+
27,27
|
| 1547 |
+
3,27
|
| 1548 |
+
19,14
|
| 1549 |
+
27,27
|
| 1550 |
+
22,27
|
| 1551 |
+
27,27
|
| 1552 |
+
22,27
|
| 1553 |
+
27,27
|
| 1554 |
+
5,5
|
| 1555 |
+
3,0
|
| 1556 |
+
27,27
|
| 1557 |
+
7,27
|
| 1558 |
+
18,18
|
| 1559 |
+
27,27
|
| 1560 |
+
15,15
|
| 1561 |
+
18,18
|
| 1562 |
+
6,7
|
| 1563 |
+
0,0
|
| 1564 |
+
17,17
|
| 1565 |
+
0,27
|
| 1566 |
+
0,0
|
| 1567 |
+
27,27
|
| 1568 |
+
27,13
|
| 1569 |
+
3,2
|
| 1570 |
+
4,27
|
| 1571 |
+
0,0
|
| 1572 |
+
18,18
|
| 1573 |
+
27,27
|
| 1574 |
+
1,1
|
| 1575 |
+
27,27
|
| 1576 |
+
15,15
|
| 1577 |
+
6,6
|
| 1578 |
+
27,27
|
| 1579 |
+
22,27
|
| 1580 |
+
18,18
|
| 1581 |
+
7,27
|
| 1582 |
+
15,15
|
| 1583 |
+
27,27
|
| 1584 |
+
10,10
|
| 1585 |
+
2,3
|
| 1586 |
+
27,3
|
| 1587 |
+
18,18
|
| 1588 |
+
0,17
|
| 1589 |
+
9,25
|
| 1590 |
+
0,26
|
| 1591 |
+
27,3
|
| 1592 |
+
15,15
|
| 1593 |
+
1,1
|
| 1594 |
+
27,27
|
| 1595 |
+
27,27
|
| 1596 |
+
10,15
|
| 1597 |
+
27,6
|
| 1598 |
+
27,2
|
| 1599 |
+
1,1
|
| 1600 |
+
25,0
|
| 1601 |
+
15,15
|
| 1602 |
+
15,15
|
| 1603 |
+
0,0
|
| 1604 |
+
4,4
|
| 1605 |
+
11,3
|
| 1606 |
+
27,27
|
| 1607 |
+
0,0
|
| 1608 |
+
27,27
|
| 1609 |
+
27,7
|
| 1610 |
+
10,10
|
| 1611 |
+
25,25
|
| 1612 |
+
4,27
|
| 1613 |
+
7,27
|
| 1614 |
+
2,27
|
| 1615 |
+
3,7
|
| 1616 |
+
0,0
|
| 1617 |
+
15,15
|
| 1618 |
+
27,4
|
| 1619 |
+
27,1
|
| 1620 |
+
1,1
|
| 1621 |
+
15,15
|
| 1622 |
+
0,5
|
| 1623 |
+
7,26
|
| 1624 |
+
18,18
|
| 1625 |
+
10,27
|
| 1626 |
+
10,25
|
| 1627 |
+
1,1
|
| 1628 |
+
10,27
|
| 1629 |
+
15,15
|
| 1630 |
+
13,7
|
| 1631 |
+
13,27
|
| 1632 |
+
27,27
|
| 1633 |
+
4,27
|
| 1634 |
+
27,27
|
| 1635 |
+
27,27
|
| 1636 |
+
0,1
|
| 1637 |
+
27,11
|
| 1638 |
+
27,7
|
| 1639 |
+
4,4
|
| 1640 |
+
0,0
|
| 1641 |
+
18,18
|
| 1642 |
+
9,9
|
| 1643 |
+
4,18
|
| 1644 |
+
24,24
|
| 1645 |
+
2,18
|
| 1646 |
+
15,15
|
| 1647 |
+
0,0
|
| 1648 |
+
26,27
|
| 1649 |
+
0,27
|
| 1650 |
+
27,3
|
| 1651 |
+
27,27
|
| 1652 |
+
0,0
|
| 1653 |
+
27,27
|
| 1654 |
+
10,27
|
| 1655 |
+
6,6
|
| 1656 |
+
26,26
|
| 1657 |
+
7,7
|
| 1658 |
+
17,17
|
| 1659 |
+
10,25
|
| 1660 |
+
27,27
|
| 1661 |
+
27,27
|
| 1662 |
+
18,18
|
| 1663 |
+
1,1
|
| 1664 |
+
27,27
|
| 1665 |
+
13,17
|
| 1666 |
+
27,27
|
| 1667 |
+
0,18
|
| 1668 |
+
27,7
|
| 1669 |
+
13,20
|
| 1670 |
+
22,4
|
| 1671 |
+
27,27
|
| 1672 |
+
27,27
|
| 1673 |
+
27,1
|
| 1674 |
+
0,0
|
| 1675 |
+
11,11
|
| 1676 |
+
27,25
|
| 1677 |
+
13,17
|
| 1678 |
+
1,1
|
| 1679 |
+
27,14
|
| 1680 |
+
11,11
|
| 1681 |
+
0,0
|
| 1682 |
+
4,4
|
| 1683 |
+
25,25
|
| 1684 |
+
8,8
|
| 1685 |
+
18,18
|
| 1686 |
+
1,1
|
| 1687 |
+
7,26
|
| 1688 |
+
6,27
|
| 1689 |
+
27,7
|
| 1690 |
+
18,18
|
| 1691 |
+
18,18
|
| 1692 |
+
27,4
|
| 1693 |
+
22,26
|
| 1694 |
+
0,26
|
| 1695 |
+
22,27
|
| 1696 |
+
18,18
|
| 1697 |
+
3,0
|
| 1698 |
+
27,27
|
| 1699 |
+
0,25
|
| 1700 |
+
3,27
|
| 1701 |
+
3,0
|
| 1702 |
+
11,10
|
| 1703 |
+
27,1
|
| 1704 |
+
18,4
|
| 1705 |
+
27,27
|
| 1706 |
+
0,0
|
| 1707 |
+
27,27
|
| 1708 |
+
4,27
|
| 1709 |
+
27,13
|
| 1710 |
+
27,27
|
| 1711 |
+
27,27
|
| 1712 |
+
20,5
|
| 1713 |
+
0,0
|
| 1714 |
+
27,3
|
| 1715 |
+
27,27
|
| 1716 |
+
27,27
|
| 1717 |
+
3,3
|
| 1718 |
+
7,27
|
| 1719 |
+
20,20
|
| 1720 |
+
3,27
|
| 1721 |
+
20,0
|
| 1722 |
+
13,17
|
| 1723 |
+
27,27
|
| 1724 |
+
3,27
|
| 1725 |
+
27,27
|
| 1726 |
+
4,27
|
| 1727 |
+
4,27
|
| 1728 |
+
5,27
|
| 1729 |
+
0,4
|
| 1730 |
+
7,7
|
| 1731 |
+
7,7
|
| 1732 |
+
0,27
|
| 1733 |
+
25,12
|
| 1734 |
+
0,0
|
| 1735 |
+
27,10
|
| 1736 |
+
10,10
|
| 1737 |
+
27,27
|
| 1738 |
+
24,24
|
| 1739 |
+
9,9
|
| 1740 |
+
24,24
|
| 1741 |
+
4,4
|
| 1742 |
+
6,10
|
| 1743 |
+
17,17
|
| 1744 |
+
0,0
|
| 1745 |
+
2,2
|
| 1746 |
+
27,27
|
| 1747 |
+
27,27
|
| 1748 |
+
10,10
|
| 1749 |
+
4,27
|
| 1750 |
+
3,10
|
| 1751 |
+
25,25
|
| 1752 |
+
27,27
|
| 1753 |
+
0,0
|
| 1754 |
+
27,27
|
| 1755 |
+
19,7
|
| 1756 |
+
27,27
|
| 1757 |
+
26,3
|
| 1758 |
+
27,27
|
| 1759 |
+
18,4
|
| 1760 |
+
27,27
|
| 1761 |
+
27,27
|
| 1762 |
+
3,27
|
| 1763 |
+
27,27
|
| 1764 |
+
27,27
|
| 1765 |
+
1,27
|
| 1766 |
+
27,27
|
| 1767 |
+
0,18
|
| 1768 |
+
2,2
|
| 1769 |
+
18,18
|
| 1770 |
+
20,27
|
| 1771 |
+
26,26
|
| 1772 |
+
0,0
|
| 1773 |
+
27,27
|
| 1774 |
+
3,7
|
| 1775 |
+
27,27
|
| 1776 |
+
15,15
|
| 1777 |
+
10,27
|
| 1778 |
+
6,6
|
| 1779 |
+
1,1
|
| 1780 |
+
21,0
|
| 1781 |
+
27,5
|
| 1782 |
+
27,0
|
| 1783 |
+
25,9
|
| 1784 |
+
11,14
|
| 1785 |
+
27,27
|
| 1786 |
+
27,4
|
| 1787 |
+
1,1
|
| 1788 |
+
20,20
|
| 1789 |
+
0,15
|
| 1790 |
+
27,27
|
| 1791 |
+
4,4
|
| 1792 |
+
27,14
|
| 1793 |
+
25,27
|
| 1794 |
+
22,27
|
| 1795 |
+
0,13
|
| 1796 |
+
0,0
|
| 1797 |
+
18,18
|
| 1798 |
+
27,27
|
| 1799 |
+
27,27
|
| 1800 |
+
27,27
|
| 1801 |
+
9,27
|
| 1802 |
+
27,10
|
| 1803 |
+
17,1
|
| 1804 |
+
0,1
|
| 1805 |
+
4,3
|
| 1806 |
+
3,3
|
| 1807 |
+
17,17
|
| 1808 |
+
5,5
|
| 1809 |
+
27,27
|
| 1810 |
+
27,4
|
| 1811 |
+
0,0
|
| 1812 |
+
4,4
|
| 1813 |
+
27,7
|
| 1814 |
+
15,4
|
| 1815 |
+
7,25
|
| 1816 |
+
1,1
|
| 1817 |
+
7,6
|
| 1818 |
+
7,18
|
| 1819 |
+
1,27
|
| 1820 |
+
1,1
|
| 1821 |
+
0,0
|
| 1822 |
+
1,1
|
| 1823 |
+
1,1
|
| 1824 |
+
10,27
|
| 1825 |
+
0,0
|
| 1826 |
+
2,2
|
| 1827 |
+
10,10
|
| 1828 |
+
10,0
|
| 1829 |
+
27,9
|
| 1830 |
+
1,1
|
| 1831 |
+
27,0
|
| 1832 |
+
27,27
|
| 1833 |
+
22,27
|
| 1834 |
+
7,7
|
| 1835 |
+
0,0
|
| 1836 |
+
27,11
|
| 1837 |
+
26,26
|
| 1838 |
+
9,6
|
| 1839 |
+
14,14
|
| 1840 |
+
18,18
|
| 1841 |
+
27,7
|
| 1842 |
+
1,1
|
| 1843 |
+
27,27
|
| 1844 |
+
7,27
|
| 1845 |
+
18,0
|
| 1846 |
+
27,27
|
| 1847 |
+
27,27
|
| 1848 |
+
27,0
|
| 1849 |
+
20,20
|
| 1850 |
+
7,27
|
| 1851 |
+
0,0
|
| 1852 |
+
27,27
|
| 1853 |
+
18,0
|
| 1854 |
+
5,27
|
| 1855 |
+
18,18
|
| 1856 |
+
3,24
|
| 1857 |
+
10,1
|
| 1858 |
+
6,27
|
| 1859 |
+
27,4
|
| 1860 |
+
27,10
|
| 1861 |
+
20,20
|
| 1862 |
+
25,25
|
| 1863 |
+
27,27
|
| 1864 |
+
27,3
|
| 1865 |
+
13,13
|
| 1866 |
+
2,2
|
| 1867 |
+
26,0
|
| 1868 |
+
10,11
|
| 1869 |
+
10,27
|
| 1870 |
+
25,27
|
| 1871 |
+
3,27
|
| 1872 |
+
27,27
|
| 1873 |
+
3,10
|
| 1874 |
+
0,0
|
| 1875 |
+
10,10
|
| 1876 |
+
13,27
|
| 1877 |
+
6,6
|
| 1878 |
+
0,0
|
| 1879 |
+
1,1
|
| 1880 |
+
27,27
|
| 1881 |
+
3,2
|
| 1882 |
+
27,10
|
| 1883 |
+
3,2
|
| 1884 |
+
1,1
|
| 1885 |
+
17,17
|
| 1886 |
+
7,27
|
| 1887 |
+
24,24
|
| 1888 |
+
15,15
|
| 1889 |
+
3,3
|
| 1890 |
+
0,27
|
| 1891 |
+
20,8
|
| 1892 |
+
27,7
|
| 1893 |
+
2,3
|
| 1894 |
+
27,27
|
| 1895 |
+
27,10
|
| 1896 |
+
15,15
|
| 1897 |
+
9,27
|
| 1898 |
+
27,27
|
| 1899 |
+
27,27
|
| 1900 |
+
15,15
|
| 1901 |
+
13,27
|
| 1902 |
+
27,27
|
| 1903 |
+
20,27
|
| 1904 |
+
27,27
|
| 1905 |
+
27,27
|
| 1906 |
+
15,15
|
| 1907 |
+
27,27
|
| 1908 |
+
6,6
|
| 1909 |
+
27,27
|
| 1910 |
+
3,27
|
| 1911 |
+
6,24
|
| 1912 |
+
22,11
|
| 1913 |
+
27,27
|
| 1914 |
+
27,4
|
| 1915 |
+
7,7
|
| 1916 |
+
25,10
|
| 1917 |
+
27,6
|
| 1918 |
+
27,27
|
| 1919 |
+
27,27
|
| 1920 |
+
27,27
|
| 1921 |
+
0,4
|
| 1922 |
+
4,4
|
| 1923 |
+
27,27
|
| 1924 |
+
10,10
|
| 1925 |
+
1,8
|
| 1926 |
+
2,27
|
| 1927 |
+
3,11
|
| 1928 |
+
0,20
|
| 1929 |
+
27,2
|
| 1930 |
+
5,0
|
| 1931 |
+
15,0
|
| 1932 |
+
27,27
|
| 1933 |
+
1,1
|
| 1934 |
+
9,27
|
| 1935 |
+
9,27
|
| 1936 |
+
15,15
|
| 1937 |
+
27,27
|
| 1938 |
+
27,5
|
| 1939 |
+
0,0
|
| 1940 |
+
15,0
|
| 1941 |
+
25,25
|
| 1942 |
+
0,0
|
| 1943 |
+
3,1
|
| 1944 |
+
27,27
|
| 1945 |
+
20,20
|
| 1946 |
+
0,4
|
| 1947 |
+
5,27
|
| 1948 |
+
10,10
|
| 1949 |
+
15,15
|
| 1950 |
+
1,1
|
| 1951 |
+
18,18
|
| 1952 |
+
6,7
|
| 1953 |
+
0,18
|
| 1954 |
+
1,1
|
| 1955 |
+
27,27
|
| 1956 |
+
4,27
|
| 1957 |
+
15,0
|
| 1958 |
+
27,27
|
| 1959 |
+
9,27
|
| 1960 |
+
1,1
|
| 1961 |
+
20,20
|
| 1962 |
+
20,20
|
| 1963 |
+
15,15
|
| 1964 |
+
1,1
|
| 1965 |
+
27,27
|
| 1966 |
+
6,6
|
| 1967 |
+
3,3
|
| 1968 |
+
4,27
|
| 1969 |
+
27,27
|
| 1970 |
+
1,1
|
| 1971 |
+
15,7
|
| 1972 |
+
10,27
|
| 1973 |
+
27,27
|
| 1974 |
+
5,5
|
| 1975 |
+
27,27
|
| 1976 |
+
27,1
|
| 1977 |
+
10,10
|
| 1978 |
+
22,27
|
| 1979 |
+
15,17
|
| 1980 |
+
2,2
|
| 1981 |
+
1,1
|
| 1982 |
+
27,6
|
| 1983 |
+
27,27
|
| 1984 |
+
5,5
|
| 1985 |
+
27,27
|
| 1986 |
+
18,18
|
| 1987 |
+
27,6
|
| 1988 |
+
27,27
|
| 1989 |
+
15,15
|
| 1990 |
+
20,20
|
| 1991 |
+
9,2
|
| 1992 |
+
27,27
|
| 1993 |
+
0,0
|
| 1994 |
+
4,27
|
| 1995 |
+
0,0
|
| 1996 |
+
27,6
|
| 1997 |
+
1,1
|
| 1998 |
+
27,27
|
| 1999 |
+
0,0
|
| 2000 |
+
27,27
|
| 2001 |
+
10,0
|
| 2002 |
+
27,27
|
| 2003 |
+
4,4
|
| 2004 |
+
11,11
|
| 2005 |
+
17,17
|
| 2006 |
+
10,10
|
| 2007 |
+
22,27
|
| 2008 |
+
15,15
|
| 2009 |
+
5,27
|
| 2010 |
+
27,27
|
| 2011 |
+
27,27
|
| 2012 |
+
7,27
|
| 2013 |
+
1,27
|
| 2014 |
+
0,0
|
| 2015 |
+
7,7
|
| 2016 |
+
0,0
|
| 2017 |
+
11,11
|
| 2018 |
+
18,18
|
| 2019 |
+
1,1
|
| 2020 |
+
0,0
|
| 2021 |
+
0,0
|
| 2022 |
+
4,27
|
| 2023 |
+
3,11
|
| 2024 |
+
15,15
|
| 2025 |
+
22,10
|
| 2026 |
+
15,15
|
| 2027 |
+
22,6
|
| 2028 |
+
18,18
|
| 2029 |
+
27,27
|
| 2030 |
+
27,27
|
| 2031 |
+
15,15
|
| 2032 |
+
4,4
|
| 2033 |
+
20,20
|
| 2034 |
+
20,20
|
| 2035 |
+
4,4
|
| 2036 |
+
10,27
|
| 2037 |
+
27,27
|
| 2038 |
+
17,17
|
| 2039 |
+
3,3
|
| 2040 |
+
27,27
|
| 2041 |
+
1,1
|
| 2042 |
+
9,18
|
| 2043 |
+
27,4
|
| 2044 |
+
27,7
|
| 2045 |
+
6,6
|
| 2046 |
+
2,2
|
| 2047 |
+
11,27
|
| 2048 |
+
10,2
|
| 2049 |
+
27,27
|
| 2050 |
+
4,9
|
| 2051 |
+
0,0
|
| 2052 |
+
15,2
|
| 2053 |
+
26,26
|
| 2054 |
+
1,1
|
| 2055 |
+
14,10
|
| 2056 |
+
4,18
|
| 2057 |
+
22,27
|
| 2058 |
+
24,24
|
| 2059 |
+
4,4
|
| 2060 |
+
10,1
|
| 2061 |
+
27,7
|
| 2062 |
+
4,27
|
| 2063 |
+
0,0
|
| 2064 |
+
4,4
|
| 2065 |
+
27,4
|
| 2066 |
+
10,6
|
| 2067 |
+
27,10
|
| 2068 |
+
27,27
|
| 2069 |
+
21,11
|
| 2070 |
+
10,27
|
| 2071 |
+
17,17
|
| 2072 |
+
27,27
|
| 2073 |
+
27,27
|
| 2074 |
+
7,7
|
| 2075 |
+
11,11
|
| 2076 |
+
3,2
|
| 2077 |
+
27,27
|
| 2078 |
+
18,18
|
| 2079 |
+
27,27
|
| 2080 |
+
27,3
|
| 2081 |
+
27,27
|
| 2082 |
+
4,3
|
| 2083 |
+
3,10
|
| 2084 |
+
4,7
|
| 2085 |
+
27,27
|
| 2086 |
+
0,27
|
| 2087 |
+
2,27
|
| 2088 |
+
27,27
|
| 2089 |
+
17,27
|
| 2090 |
+
27,27
|
| 2091 |
+
2,7
|
| 2092 |
+
2,27
|
| 2093 |
+
13,13
|
| 2094 |
+
3,27
|
| 2095 |
+
26,27
|
| 2096 |
+
27,18
|
| 2097 |
+
27,27
|
| 2098 |
+
0,0
|
| 2099 |
+
18,18
|
| 2100 |
+
0,0
|
| 2101 |
+
27,27
|
| 2102 |
+
25,25
|
| 2103 |
+
10,27
|
| 2104 |
+
15,15
|
| 2105 |
+
27,27
|
| 2106 |
+
12,27
|
| 2107 |
+
27,8
|
| 2108 |
+
3,3
|
| 2109 |
+
9,10
|
| 2110 |
+
2,2
|
| 2111 |
+
27,4
|
| 2112 |
+
12,22
|
| 2113 |
+
2,27
|
| 2114 |
+
12,22
|
| 2115 |
+
0,4
|
| 2116 |
+
1,1
|
| 2117 |
+
8,27
|
| 2118 |
+
4,4
|
| 2119 |
+
3,27
|
| 2120 |
+
17,26
|
| 2121 |
+
22,27
|
| 2122 |
+
22,26
|
| 2123 |
+
9,3
|
| 2124 |
+
1,1
|
| 2125 |
+
27,0
|
| 2126 |
+
0,27
|
| 2127 |
+
27,7
|
| 2128 |
+
27,27
|
| 2129 |
+
17,17
|
| 2130 |
+
3,3
|
| 2131 |
+
27,6
|
| 2132 |
+
15,15
|
| 2133 |
+
7,7
|
| 2134 |
+
10,10
|
| 2135 |
+
27,27
|
| 2136 |
+
3,3
|
| 2137 |
+
4,4
|
| 2138 |
+
18,0
|
| 2139 |
+
27,27
|
| 2140 |
+
15,15
|
| 2141 |
+
22,27
|
| 2142 |
+
27,27
|
| 2143 |
+
25,25
|
| 2144 |
+
0,17
|
| 2145 |
+
2,18
|
| 2146 |
+
27,27
|
| 2147 |
+
3,14
|
| 2148 |
+
2,27
|
| 2149 |
+
20,15
|
| 2150 |
+
0,0
|
| 2151 |
+
12,12
|
| 2152 |
+
0,18
|
| 2153 |
+
9,27
|
| 2154 |
+
17,0
|
| 2155 |
+
2,2
|
| 2156 |
+
27,0
|
| 2157 |
+
14,27
|
| 2158 |
+
27,27
|
| 2159 |
+
27,27
|
| 2160 |
+
15,15
|
| 2161 |
+
27,27
|
| 2162 |
+
18,18
|
| 2163 |
+
27,5
|
| 2164 |
+
7,7
|
| 2165 |
+
0,0
|
| 2166 |
+
14,14
|
| 2167 |
+
27,27
|
| 2168 |
+
0,18
|
| 2169 |
+
1,15
|
| 2170 |
+
27,3
|
| 2171 |
+
27,1
|
| 2172 |
+
7,20
|
| 2173 |
+
18,18
|
| 2174 |
+
27,2
|
| 2175 |
+
6,6
|
| 2176 |
+
5,5
|
| 2177 |
+
1,1
|
| 2178 |
+
27,27
|
| 2179 |
+
27,7
|
| 2180 |
+
0,0
|
| 2181 |
+
27,27
|
| 2182 |
+
8,8
|
| 2183 |
+
24,15
|
| 2184 |
+
0,0
|
| 2185 |
+
0,13
|
| 2186 |
+
17,17
|
| 2187 |
+
6,7
|
| 2188 |
+
27,27
|
| 2189 |
+
14,14
|
| 2190 |
+
10,7
|
| 2191 |
+
6,6
|
| 2192 |
+
4,27
|
| 2193 |
+
20,20
|
| 2194 |
+
27,17
|
| 2195 |
+
27,0
|
| 2196 |
+
0,0
|
| 2197 |
+
0,18
|
| 2198 |
+
10,27
|
| 2199 |
+
26,10
|
| 2200 |
+
27,27
|
| 2201 |
+
27,27
|
| 2202 |
+
18,0
|
| 2203 |
+
3,3
|
| 2204 |
+
0,0
|
| 2205 |
+
1,1
|
| 2206 |
+
7,27
|
| 2207 |
+
22,27
|
| 2208 |
+
12,12
|
| 2209 |
+
27,25
|
| 2210 |
+
27,27
|
| 2211 |
+
18,18
|
| 2212 |
+
11,27
|
| 2213 |
+
20,17
|
| 2214 |
+
4,27
|
| 2215 |
+
22,4
|
| 2216 |
+
27,27
|
| 2217 |
+
15,15
|
| 2218 |
+
3,27
|
| 2219 |
+
11,20
|
| 2220 |
+
0,0
|
| 2221 |
+
1,1
|
| 2222 |
+
7,7
|
| 2223 |
+
1,1
|
| 2224 |
+
27,27
|
| 2225 |
+
27,27
|
| 2226 |
+
3,27
|
| 2227 |
+
25,0
|
| 2228 |
+
2,0
|
| 2229 |
+
1,1
|
| 2230 |
+
1,1
|
| 2231 |
+
27,27
|
| 2232 |
+
4,14
|
| 2233 |
+
27,27
|
| 2234 |
+
0,0
|
| 2235 |
+
26,0
|
| 2236 |
+
3,2
|
| 2237 |
+
18,18
|
| 2238 |
+
10,27
|
| 2239 |
+
27,27
|
| 2240 |
+
4,4
|
| 2241 |
+
27,27
|
| 2242 |
+
25,27
|
| 2243 |
+
0,0
|
| 2244 |
+
15,17
|
| 2245 |
+
18,18
|
| 2246 |
+
1,1
|
| 2247 |
+
27,27
|
| 2248 |
+
0,0
|
| 2249 |
+
27,20
|
| 2250 |
+
27,27
|
| 2251 |
+
0,11
|
| 2252 |
+
27,8
|
| 2253 |
+
2,25
|
| 2254 |
+
25,25
|
| 2255 |
+
0,0
|
| 2256 |
+
18,18
|
| 2257 |
+
1,1
|
| 2258 |
+
3,3
|
| 2259 |
+
27,27
|
| 2260 |
+
27,4
|
| 2261 |
+
4,27
|
| 2262 |
+
27,27
|
| 2263 |
+
27,27
|
| 2264 |
+
27,27
|
| 2265 |
+
14,14
|
| 2266 |
+
7,7
|
| 2267 |
+
27,27
|
| 2268 |
+
27,27
|
| 2269 |
+
22,27
|
| 2270 |
+
27,27
|
| 2271 |
+
27,27
|
| 2272 |
+
27,27
|
| 2273 |
+
27,27
|
| 2274 |
+
7,7
|
| 2275 |
+
10,27
|
| 2276 |
+
24,24
|
| 2277 |
+
27,15
|
| 2278 |
+
10,3
|
| 2279 |
+
4,10
|
| 2280 |
+
3,2
|
| 2281 |
+
7,7
|
| 2282 |
+
27,0
|
| 2283 |
+
0,1
|
| 2284 |
+
27,27
|
| 2285 |
+
5,27
|
| 2286 |
+
11,10
|
| 2287 |
+
22,27
|
| 2288 |
+
17,13
|
| 2289 |
+
9,11
|
| 2290 |
+
18,18
|
| 2291 |
+
10,27
|
| 2292 |
+
25,24
|
| 2293 |
+
27,27
|
| 2294 |
+
15,15
|
| 2295 |
+
17,1
|
| 2296 |
+
27,7
|
| 2297 |
+
17,17
|
| 2298 |
+
15,15
|
| 2299 |
+
27,9
|
| 2300 |
+
0,4
|
| 2301 |
+
4,27
|
| 2302 |
+
17,17
|
| 2303 |
+
10,10
|
| 2304 |
+
7,7
|
| 2305 |
+
27,27
|
| 2306 |
+
18,18
|
| 2307 |
+
7,27
|
| 2308 |
+
15,0
|
| 2309 |
+
2,27
|
| 2310 |
+
4,27
|
| 2311 |
+
4,27
|
| 2312 |
+
15,15
|
| 2313 |
+
17,17
|
| 2314 |
+
22,0
|
| 2315 |
+
2,11
|
| 2316 |
+
22,27
|
| 2317 |
+
27,27
|
| 2318 |
+
27,27
|
| 2319 |
+
9,27
|
| 2320 |
+
19,9
|
| 2321 |
+
2,2
|
| 2322 |
+
2,2
|
| 2323 |
+
27,27
|
| 2324 |
+
14,27
|
| 2325 |
+
27,27
|
| 2326 |
+
15,15
|
| 2327 |
+
6,7
|
| 2328 |
+
1,1
|
| 2329 |
+
2,3
|
| 2330 |
+
1,1
|
| 2331 |
+
20,27
|
| 2332 |
+
27,27
|
| 2333 |
+
2,3
|
| 2334 |
+
0,0
|
| 2335 |
+
19,25
|
| 2336 |
+
15,15
|
| 2337 |
+
22,0
|
| 2338 |
+
17,27
|
| 2339 |
+
1,1
|
| 2340 |
+
27,27
|
| 2341 |
+
22,26
|
| 2342 |
+
22,22
|
| 2343 |
+
10,9
|
| 2344 |
+
15,15
|
| 2345 |
+
3,1
|
| 2346 |
+
3,2
|
| 2347 |
+
8,8
|
| 2348 |
+
20,20
|
| 2349 |
+
0,3
|
| 2350 |
+
4,0
|
| 2351 |
+
15,27
|
| 2352 |
+
2,27
|
| 2353 |
+
6,7
|
| 2354 |
+
15,15
|
| 2355 |
+
4,27
|
| 2356 |
+
27,3
|
| 2357 |
+
3,27
|
| 2358 |
+
6,6
|
| 2359 |
+
10,10
|
| 2360 |
+
25,24
|
| 2361 |
+
27,25
|
| 2362 |
+
7,7
|
| 2363 |
+
27,27
|
| 2364 |
+
18,18
|
| 2365 |
+
3,1
|
| 2366 |
+
27,5
|
| 2367 |
+
24,24
|
| 2368 |
+
27,27
|
| 2369 |
+
2,27
|
| 2370 |
+
27,27
|
| 2371 |
+
20,20
|
| 2372 |
+
27,11
|
| 2373 |
+
27,27
|
| 2374 |
+
0,0
|
| 2375 |
+
7,0
|
| 2376 |
+
2,1
|
| 2377 |
+
4,10
|
| 2378 |
+
11,27
|
| 2379 |
+
4,4
|
| 2380 |
+
7,13
|
| 2381 |
+
10,10
|
| 2382 |
+
7,7
|
| 2383 |
+
15,15
|
| 2384 |
+
27,27
|
| 2385 |
+
22,27
|
| 2386 |
+
4,4
|
| 2387 |
+
25,25
|
| 2388 |
+
0,0
|
| 2389 |
+
27,7
|
| 2390 |
+
9,10
|
| 2391 |
+
27,27
|
| 2392 |
+
7,7
|
| 2393 |
+
7,27
|
| 2394 |
+
2,3
|
| 2395 |
+
18,18
|
| 2396 |
+
0,0
|
| 2397 |
+
18,18
|
| 2398 |
+
6,7
|
| 2399 |
+
2,27
|
| 2400 |
+
26,26
|
| 2401 |
+
27,3
|
| 2402 |
+
14,14
|
| 2403 |
+
8,27
|
| 2404 |
+
27,27
|
| 2405 |
+
27,7
|
| 2406 |
+
27,10
|
| 2407 |
+
10,10
|
| 2408 |
+
27,27
|
| 2409 |
+
25,6
|
| 2410 |
+
0,0
|
| 2411 |
+
10,13
|
| 2412 |
+
0,27
|
| 2413 |
+
0,0
|
| 2414 |
+
27,27
|
| 2415 |
+
4,27
|
| 2416 |
+
27,9
|
| 2417 |
+
0,0
|
| 2418 |
+
7,7
|
| 2419 |
+
1,1
|
| 2420 |
+
13,13
|
| 2421 |
+
13,15
|
| 2422 |
+
0,0
|
| 2423 |
+
20,27
|
| 2424 |
+
9,1
|
| 2425 |
+
22,22
|
| 2426 |
+
1,1
|
| 2427 |
+
4,18
|
| 2428 |
+
24,24
|
| 2429 |
+
27,27
|
| 2430 |
+
27,27
|
| 2431 |
+
17,17
|
| 2432 |
+
3,27
|
| 2433 |
+
8,27
|
| 2434 |
+
3,10
|
| 2435 |
+
27,27
|
| 2436 |
+
22,7
|
| 2437 |
+
10,27
|
| 2438 |
+
27,27
|
| 2439 |
+
10,10
|
| 2440 |
+
9,24
|
| 2441 |
+
27,27
|
| 2442 |
+
1,1
|
| 2443 |
+
27,27
|
| 2444 |
+
27,27
|
| 2445 |
+
27,3
|
| 2446 |
+
7,7
|
| 2447 |
+
15,15
|
| 2448 |
+
17,27
|
| 2449 |
+
27,27
|
| 2450 |
+
27,27
|
| 2451 |
+
27,10
|
| 2452 |
+
8,20
|
| 2453 |
+
1,6
|
| 2454 |
+
27,13
|
| 2455 |
+
7,7
|
| 2456 |
+
27,27
|
| 2457 |
+
27,27
|
| 2458 |
+
1,1
|
| 2459 |
+
4,27
|
| 2460 |
+
4,27
|
| 2461 |
+
10,3
|
| 2462 |
+
0,0
|
| 2463 |
+
15,15
|
| 2464 |
+
20,5
|
| 2465 |
+
15,15
|
| 2466 |
+
6,7
|
| 2467 |
+
27,3
|
| 2468 |
+
9,27
|
| 2469 |
+
27,27
|
| 2470 |
+
3,3
|
| 2471 |
+
8,8
|
| 2472 |
+
18,18
|
| 2473 |
+
27,7
|
| 2474 |
+
27,9
|
| 2475 |
+
7,7
|
| 2476 |
+
27,27
|
| 2477 |
+
17,4
|
| 2478 |
+
10,1
|
| 2479 |
+
3,10
|
| 2480 |
+
0,17
|
| 2481 |
+
1,1
|
| 2482 |
+
27,10
|
| 2483 |
+
1,1
|
| 2484 |
+
4,5
|
| 2485 |
+
10,6
|
| 2486 |
+
5,5
|
| 2487 |
+
27,27
|
| 2488 |
+
3,10
|
| 2489 |
+
1,1
|
| 2490 |
+
20,5
|
| 2491 |
+
27,1
|
| 2492 |
+
13,0
|
| 2493 |
+
27,27
|
| 2494 |
+
10,6
|
| 2495 |
+
4,4
|
| 2496 |
+
2,2
|
| 2497 |
+
24,24
|
| 2498 |
+
7,7
|
| 2499 |
+
15,15
|
| 2500 |
+
27,27
|
| 2501 |
+
1,1
|
| 2502 |
+
0,0
|
| 2503 |
+
27,27
|
| 2504 |
+
17,17
|
| 2505 |
+
9,27
|
| 2506 |
+
1,1
|
| 2507 |
+
27,10
|
| 2508 |
+
0,0
|
| 2509 |
+
18,7
|
| 2510 |
+
27,27
|
| 2511 |
+
4,27
|
| 2512 |
+
17,0
|
| 2513 |
+
4,27
|
| 2514 |
+
27,3
|
| 2515 |
+
17,17
|
| 2516 |
+
7,6
|
| 2517 |
+
4,18
|
| 2518 |
+
27,10
|
| 2519 |
+
6,7
|
| 2520 |
+
27,2
|
| 2521 |
+
22,27
|
| 2522 |
+
18,0
|
| 2523 |
+
3,2
|
| 2524 |
+
25,24
|
| 2525 |
+
27,27
|
| 2526 |
+
27,27
|
| 2527 |
+
0,0
|
| 2528 |
+
27,27
|
| 2529 |
+
0,0
|
| 2530 |
+
18,18
|
| 2531 |
+
27,27
|
| 2532 |
+
27,27
|
| 2533 |
+
1,1
|
| 2534 |
+
15,20
|
| 2535 |
+
27,27
|
| 2536 |
+
2,2
|
| 2537 |
+
22,18
|
| 2538 |
+
7,7
|
| 2539 |
+
27,27
|
| 2540 |
+
27,2
|
| 2541 |
+
27,27
|
| 2542 |
+
15,15
|
| 2543 |
+
5,1
|
| 2544 |
+
0,0
|
| 2545 |
+
3,10
|
| 2546 |
+
3,27
|
| 2547 |
+
15,2
|
| 2548 |
+
27,27
|
| 2549 |
+
2,2
|
| 2550 |
+
17,1
|
| 2551 |
+
27,27
|
| 2552 |
+
27,27
|
| 2553 |
+
8,8
|
| 2554 |
+
27,27
|
| 2555 |
+
26,27
|
| 2556 |
+
27,27
|
| 2557 |
+
13,27
|
| 2558 |
+
15,15
|
| 2559 |
+
4,4
|
| 2560 |
+
27,27
|
| 2561 |
+
9,27
|
| 2562 |
+
4,0
|
| 2563 |
+
0,0
|
| 2564 |
+
27,27
|
| 2565 |
+
0,0
|
| 2566 |
+
3,27
|
| 2567 |
+
9,27
|
| 2568 |
+
27,9
|
| 2569 |
+
27,3
|
| 2570 |
+
27,27
|
| 2571 |
+
27,27
|
| 2572 |
+
7,14
|
| 2573 |
+
3,27
|
| 2574 |
+
27,27
|
| 2575 |
+
14,14
|
| 2576 |
+
27,3
|
| 2577 |
+
27,27
|
| 2578 |
+
4,4
|
| 2579 |
+
0,15
|
| 2580 |
+
12,12
|
| 2581 |
+
7,7
|
| 2582 |
+
1,1
|
| 2583 |
+
3,3
|
| 2584 |
+
20,20
|
| 2585 |
+
11,2
|
| 2586 |
+
27,27
|
| 2587 |
+
27,27
|
| 2588 |
+
27,27
|
| 2589 |
+
20,7
|
| 2590 |
+
27,26
|
| 2591 |
+
22,27
|
| 2592 |
+
1,1
|
| 2593 |
+
27,27
|
| 2594 |
+
1,1
|
| 2595 |
+
27,27
|
| 2596 |
+
0,0
|
| 2597 |
+
4,5
|
| 2598 |
+
4,4
|
| 2599 |
+
27,2
|
| 2600 |
+
27,27
|
| 2601 |
+
7,7
|
| 2602 |
+
0,0
|
| 2603 |
+
14,14
|
| 2604 |
+
4,27
|
| 2605 |
+
4,26
|
| 2606 |
+
15,15
|
| 2607 |
+
22,13
|
| 2608 |
+
1,1
|
| 2609 |
+
27,27
|
| 2610 |
+
5,20
|
| 2611 |
+
4,13
|
| 2612 |
+
10,10
|
| 2613 |
+
27,4
|
| 2614 |
+
6,27
|
| 2615 |
+
3,4
|
| 2616 |
+
17,17
|
| 2617 |
+
3,2
|
| 2618 |
+
7,7
|
| 2619 |
+
2,2
|
| 2620 |
+
27,27
|
| 2621 |
+
4,27
|
| 2622 |
+
1,1
|
| 2623 |
+
0,9
|
| 2624 |
+
0,0
|
| 2625 |
+
17,17
|
| 2626 |
+
5,5
|
| 2627 |
+
20,5
|
| 2628 |
+
27,10
|
| 2629 |
+
26,26
|
| 2630 |
+
27,27
|
| 2631 |
+
0,0
|
| 2632 |
+
7,7
|
| 2633 |
+
15,15
|
| 2634 |
+
8,8
|
| 2635 |
+
27,27
|
| 2636 |
+
11,3
|
| 2637 |
+
7,7
|
| 2638 |
+
27,10
|
| 2639 |
+
5,20
|
| 2640 |
+
10,18
|
| 2641 |
+
0,0
|
| 2642 |
+
0,0
|
| 2643 |
+
27,27
|
| 2644 |
+
0,9
|
| 2645 |
+
0,0
|
| 2646 |
+
18,18
|
| 2647 |
+
27,27
|
| 2648 |
+
27,4
|
| 2649 |
+
27,27
|
| 2650 |
+
27,27
|
| 2651 |
+
27,3
|
| 2652 |
+
0,18
|
| 2653 |
+
27,27
|
| 2654 |
+
27,27
|
| 2655 |
+
27,27
|
| 2656 |
+
22,0
|
| 2657 |
+
4,27
|
| 2658 |
+
4,27
|
| 2659 |
+
18,18
|
| 2660 |
+
27,27
|
| 2661 |
+
14,14
|
| 2662 |
+
27,27
|
| 2663 |
+
0,0
|
| 2664 |
+
5,27
|
| 2665 |
+
27,27
|
| 2666 |
+
3,27
|
| 2667 |
+
13,7
|
| 2668 |
+
9,27
|
| 2669 |
+
7,27
|
| 2670 |
+
4,4
|
| 2671 |
+
2,10
|
| 2672 |
+
0,0
|
| 2673 |
+
2,3
|
| 2674 |
+
1,1
|
| 2675 |
+
27,27
|
| 2676 |
+
10,27
|
| 2677 |
+
18,27
|
| 2678 |
+
27,10
|
| 2679 |
+
3,3
|
| 2680 |
+
27,27
|
| 2681 |
+
27,27
|
| 2682 |
+
27,27
|
| 2683 |
+
4,4
|
| 2684 |
+
27,27
|
| 2685 |
+
18,18
|
| 2686 |
+
15,3
|
| 2687 |
+
5,5
|
| 2688 |
+
1,1
|
| 2689 |
+
22,27
|
| 2690 |
+
18,18
|
| 2691 |
+
6,6
|
| 2692 |
+
6,27
|
| 2693 |
+
27,27
|
| 2694 |
+
7,15
|
| 2695 |
+
27,27
|
| 2696 |
+
14,14
|
| 2697 |
+
3,11
|
| 2698 |
+
11,14
|
| 2699 |
+
27,27
|
| 2700 |
+
18,18
|
| 2701 |
+
27,0
|
| 2702 |
+
1,1
|
| 2703 |
+
10,10
|
| 2704 |
+
27,0
|
| 2705 |
+
27,0
|
| 2706 |
+
27,27
|
| 2707 |
+
15,15
|
| 2708 |
+
27,27
|
| 2709 |
+
22,26
|
| 2710 |
+
27,27
|
| 2711 |
+
8,18
|
| 2712 |
+
27,27
|
| 2713 |
+
0,0
|
| 2714 |
+
0,0
|
| 2715 |
+
0,0
|
| 2716 |
+
7,7
|
| 2717 |
+
1,1
|
| 2718 |
+
3,10
|
| 2719 |
+
0,0
|
| 2720 |
+
18,18
|
| 2721 |
+
27,27
|
| 2722 |
+
0,0
|
| 2723 |
+
27,0
|
| 2724 |
+
7,7
|
| 2725 |
+
15,15
|
| 2726 |
+
27,27
|
| 2727 |
+
3,14
|
| 2728 |
+
27,27
|
| 2729 |
+
27,6
|
| 2730 |
+
27,27
|
| 2731 |
+
11,11
|
| 2732 |
+
4,0
|
| 2733 |
+
27,4
|
| 2734 |
+
6,10
|
| 2735 |
+
4,0
|
| 2736 |
+
0,0
|
| 2737 |
+
1,1
|
| 2738 |
+
4,27
|
| 2739 |
+
2,26
|
| 2740 |
+
10,27
|
| 2741 |
+
5,5
|
| 2742 |
+
0,0
|
| 2743 |
+
0,0
|
| 2744 |
+
0,0
|
| 2745 |
+
18,18
|
| 2746 |
+
18,18
|
| 2747 |
+
7,27
|
| 2748 |
+
27,27
|
| 2749 |
+
15,15
|
| 2750 |
+
27,27
|
| 2751 |
+
4,27
|
| 2752 |
+
27,27
|
| 2753 |
+
20,13
|
| 2754 |
+
27,9
|
| 2755 |
+
27,5
|
| 2756 |
+
15,15
|
| 2757 |
+
0,0
|
| 2758 |
+
27,25
|
| 2759 |
+
27,20
|
| 2760 |
+
13,13
|
| 2761 |
+
13,17
|
| 2762 |
+
1,1
|
| 2763 |
+
26,13
|
| 2764 |
+
25,7
|
| 2765 |
+
27,27
|
| 2766 |
+
0,20
|
| 2767 |
+
27,5
|
| 2768 |
+
14,14
|
| 2769 |
+
17,17
|
| 2770 |
+
27,13
|
| 2771 |
+
10,27
|
| 2772 |
+
22,10
|
| 2773 |
+
0,0
|
| 2774 |
+
6,27
|
| 2775 |
+
4,27
|
| 2776 |
+
3,3
|
| 2777 |
+
27,27
|
| 2778 |
+
12,12
|
| 2779 |
+
27,27
|
| 2780 |
+
25,9
|
| 2781 |
+
27,27
|
| 2782 |
+
27,27
|
| 2783 |
+
4,4
|
| 2784 |
+
20,27
|
| 2785 |
+
17,17
|
| 2786 |
+
0,0
|
| 2787 |
+
0,18
|
| 2788 |
+
15,15
|
| 2789 |
+
7,13
|
| 2790 |
+
27,27
|
| 2791 |
+
24,24
|
| 2792 |
+
27,27
|
| 2793 |
+
11,14
|
| 2794 |
+
27,10
|
| 2795 |
+
27,27
|
| 2796 |
+
0,0
|
| 2797 |
+
0,18
|
| 2798 |
+
13,0
|
| 2799 |
+
20,5
|
| 2800 |
+
0,0
|
| 2801 |
+
8,8
|
| 2802 |
+
27,27
|
| 2803 |
+
7,7
|
| 2804 |
+
0,0
|
| 2805 |
+
4,10
|
| 2806 |
+
27,7
|
| 2807 |
+
27,27
|
| 2808 |
+
1,1
|
| 2809 |
+
7,7
|
| 2810 |
+
3,27
|
| 2811 |
+
27,27
|
| 2812 |
+
1,1
|
| 2813 |
+
27,27
|
| 2814 |
+
5,18
|
| 2815 |
+
5,5
|
| 2816 |
+
3,27
|
| 2817 |
+
27,27
|
| 2818 |
+
4,4
|
| 2819 |
+
1,1
|
| 2820 |
+
0,0
|
| 2821 |
+
27,27
|
| 2822 |
+
4,4
|
| 2823 |
+
13,13
|
| 2824 |
+
11,9
|
| 2825 |
+
3,9
|
| 2826 |
+
2,7
|
| 2827 |
+
26,27
|
| 2828 |
+
9,9
|
| 2829 |
+
27,27
|
| 2830 |
+
27,7
|
| 2831 |
+
27,27
|
| 2832 |
+
27,27
|
| 2833 |
+
27,27
|
| 2834 |
+
9,9
|
| 2835 |
+
0,1
|
| 2836 |
+
1,27
|
| 2837 |
+
26,6
|
| 2838 |
+
0,0
|
| 2839 |
+
0,0
|
| 2840 |
+
27,22
|
| 2841 |
+
20,20
|
| 2842 |
+
27,27
|
| 2843 |
+
15,15
|
| 2844 |
+
25,25
|
| 2845 |
+
27,27
|
| 2846 |
+
27,27
|
| 2847 |
+
2,11
|
| 2848 |
+
0,4
|
| 2849 |
+
7,27
|
| 2850 |
+
3,2
|
| 2851 |
+
27,27
|
| 2852 |
+
15,0
|
| 2853 |
+
15,15
|
| 2854 |
+
27,27
|
| 2855 |
+
25,26
|
| 2856 |
+
8,8
|
| 2857 |
+
6,6
|
| 2858 |
+
27,27
|
| 2859 |
+
4,3
|
| 2860 |
+
0,0
|
| 2861 |
+
0,0
|
| 2862 |
+
0,0
|
| 2863 |
+
27,27
|
| 2864 |
+
3,3
|
| 2865 |
+
27,27
|
| 2866 |
+
27,10
|
| 2867 |
+
27,11
|
| 2868 |
+
3,7
|
| 2869 |
+
15,15
|
| 2870 |
+
0,0
|
| 2871 |
+
27,27
|
| 2872 |
+
18,18
|
| 2873 |
+
18,18
|
| 2874 |
+
0,0
|
| 2875 |
+
23,17
|
| 2876 |
+
3,3
|
| 2877 |
+
15,15
|
| 2878 |
+
15,15
|
| 2879 |
+
4,27
|
| 2880 |
+
15,17
|
| 2881 |
+
27,27
|
| 2882 |
+
26,27
|
| 2883 |
+
2,27
|
| 2884 |
+
13,0
|
| 2885 |
+
5,27
|
| 2886 |
+
9,9
|
| 2887 |
+
9,7
|
| 2888 |
+
15,15
|
| 2889 |
+
27,0
|
| 2890 |
+
27,22
|
| 2891 |
+
27,27
|
| 2892 |
+
4,10
|
| 2893 |
+
2,2
|
| 2894 |
+
13,7
|
| 2895 |
+
5,5
|
| 2896 |
+
10,27
|
| 2897 |
+
27,27
|
| 2898 |
+
2,2
|
| 2899 |
+
22,26
|
| 2900 |
+
13,13
|
| 2901 |
+
9,27
|
| 2902 |
+
22,27
|
| 2903 |
+
27,27
|
| 2904 |
+
7,7
|
| 2905 |
+
27,18
|
| 2906 |
+
27,27
|
| 2907 |
+
22,27
|
| 2908 |
+
3,27
|
| 2909 |
+
0,3
|
| 2910 |
+
3,27
|
| 2911 |
+
27,7
|
| 2912 |
+
26,26
|
| 2913 |
+
27,27
|
| 2914 |
+
15,0
|
| 2915 |
+
27,27
|
| 2916 |
+
27,10
|
| 2917 |
+
4,27
|
| 2918 |
+
4,4
|
| 2919 |
+
13,27
|
| 2920 |
+
26,27
|
| 2921 |
+
2,3
|
| 2922 |
+
22,6
|
| 2923 |
+
2,2
|
| 2924 |
+
27,27
|
| 2925 |
+
20,5
|
| 2926 |
+
1,1
|
| 2927 |
+
27,0
|
| 2928 |
+
3,26
|
| 2929 |
+
25,25
|
| 2930 |
+
9,9
|
| 2931 |
+
27,27
|
| 2932 |
+
0,0
|
| 2933 |
+
3,27
|
| 2934 |
+
1,1
|
| 2935 |
+
10,3
|
| 2936 |
+
15,15
|
| 2937 |
+
11,11
|
| 2938 |
+
7,27
|
| 2939 |
+
27,27
|
| 2940 |
+
1,1
|
| 2941 |
+
18,18
|
| 2942 |
+
18,18
|
| 2943 |
+
4,5
|
| 2944 |
+
4,4
|
| 2945 |
+
4,0
|
| 2946 |
+
4,4
|
| 2947 |
+
11,11
|
| 2948 |
+
27,27
|
| 2949 |
+
4,7
|
| 2950 |
+
0,0
|
| 2951 |
+
22,11
|
| 2952 |
+
18,18
|
| 2953 |
+
3,27
|
| 2954 |
+
0,0
|
| 2955 |
+
2,2
|
| 2956 |
+
18,18
|
| 2957 |
+
18,18
|
| 2958 |
+
18,0
|
| 2959 |
+
27,27
|
| 2960 |
+
2,2
|
| 2961 |
+
0,4
|
| 2962 |
+
27,27
|
| 2963 |
+
15,15
|
| 2964 |
+
15,15
|
| 2965 |
+
0,0
|
| 2966 |
+
7,7
|
| 2967 |
+
2,2
|
| 2968 |
+
0,0
|
| 2969 |
+
1,1
|
| 2970 |
+
7,7
|
| 2971 |
+
10,27
|
| 2972 |
+
4,0
|
| 2973 |
+
27,27
|
| 2974 |
+
0,0
|
| 2975 |
+
27,27
|
| 2976 |
+
6,7
|
| 2977 |
+
22,4
|
| 2978 |
+
27,27
|
| 2979 |
+
27,27
|
| 2980 |
+
6,5
|
| 2981 |
+
15,15
|
| 2982 |
+
0,15
|
| 2983 |
+
4,4
|
| 2984 |
+
10,10
|
| 2985 |
+
3,2
|
| 2986 |
+
15,15
|
| 2987 |
+
27,27
|
| 2988 |
+
27,27
|
| 2989 |
+
10,27
|
| 2990 |
+
6,27
|
| 2991 |
+
0,0
|
| 2992 |
+
25,24
|
| 2993 |
+
7,26
|
| 2994 |
+
2,27
|
| 2995 |
+
3,3
|
| 2996 |
+
8,8
|
| 2997 |
+
9,9
|
| 2998 |
+
3,27
|
| 2999 |
+
27,27
|
| 3000 |
+
11,27
|
| 3001 |
+
1,1
|
| 3002 |
+
15,15
|
| 3003 |
+
27,27
|
| 3004 |
+
27,27
|
| 3005 |
+
2,11
|
| 3006 |
+
7,7
|
| 3007 |
+
27,27
|
| 3008 |
+
16,27
|
| 3009 |
+
0,0
|
| 3010 |
+
3,2
|
| 3011 |
+
27,10
|
| 3012 |
+
18,18
|
| 3013 |
+
27,27
|
| 3014 |
+
11,27
|
| 3015 |
+
27,27
|
| 3016 |
+
20,27
|
| 3017 |
+
2,25
|
| 3018 |
+
17,17
|
| 3019 |
+
27,22
|
| 3020 |
+
15,15
|
| 3021 |
+
15,15
|
| 3022 |
+
0,0
|
| 3023 |
+
6,6
|
| 3024 |
+
4,4
|
| 3025 |
+
27,9
|
| 3026 |
+
27,0
|
| 3027 |
+
10,10
|
| 3028 |
+
6,6
|
| 3029 |
+
4,4
|
| 3030 |
+
9,3
|
| 3031 |
+
20,27
|
| 3032 |
+
0,0
|
| 3033 |
+
1,1
|
| 3034 |
+
27,27
|
| 3035 |
+
12,12
|
| 3036 |
+
9,0
|
| 3037 |
+
18,18
|
| 3038 |
+
0,0
|
| 3039 |
+
2,2
|
| 3040 |
+
3,18
|
| 3041 |
+
6,15
|
| 3042 |
+
1,1
|
| 3043 |
+
4,4
|
| 3044 |
+
15,15
|
| 3045 |
+
3,2
|
| 3046 |
+
2,3
|
| 3047 |
+
1,1
|
| 3048 |
+
26,2
|
| 3049 |
+
3,2
|
| 3050 |
+
27,27
|
| 3051 |
+
5,27
|
| 3052 |
+
5,27
|
| 3053 |
+
0,0
|
| 3054 |
+
15,15
|
| 3055 |
+
11,27
|
| 3056 |
+
7,27
|
| 3057 |
+
27,6
|
| 3058 |
+
18,18
|
| 3059 |
+
22,4
|
| 3060 |
+
4,15
|
| 3061 |
+
27,27
|
| 3062 |
+
5,27
|
| 3063 |
+
27,0
|
| 3064 |
+
27,27
|
| 3065 |
+
27,2
|
| 3066 |
+
2,2
|
| 3067 |
+
27,27
|
| 3068 |
+
3,10
|
| 3069 |
+
27,27
|
| 3070 |
+
4,27
|
| 3071 |
+
27,4
|
| 3072 |
+
13,13
|
| 3073 |
+
17,1
|
| 3074 |
+
27,27
|
| 3075 |
+
18,18
|
| 3076 |
+
10,3
|
| 3077 |
+
3,3
|
| 3078 |
+
5,27
|
| 3079 |
+
27,27
|
| 3080 |
+
27,27
|
| 3081 |
+
27,27
|
| 3082 |
+
4,27
|
| 3083 |
+
13,13
|
| 3084 |
+
1,1
|
| 3085 |
+
9,27
|
| 3086 |
+
27,27
|
| 3087 |
+
27,27
|
| 3088 |
+
5,27
|
| 3089 |
+
3,27
|
| 3090 |
+
27,7
|
| 3091 |
+
17,17
|
| 3092 |
+
4,27
|
| 3093 |
+
27,27
|
| 3094 |
+
7,7
|
| 3095 |
+
27,4
|
| 3096 |
+
15,15
|
| 3097 |
+
15,15
|
| 3098 |
+
15,15
|
| 3099 |
+
12,27
|
| 3100 |
+
27,27
|
| 3101 |
+
27,27
|
| 3102 |
+
22,1
|
| 3103 |
+
15,15
|
| 3104 |
+
9,27
|
| 3105 |
+
7,7
|
| 3106 |
+
15,15
|
| 3107 |
+
20,5
|
| 3108 |
+
27,27
|
| 3109 |
+
9,9
|
| 3110 |
+
15,15
|
| 3111 |
+
27,4
|
| 3112 |
+
27,27
|
| 3113 |
+
15,17
|
| 3114 |
+
10,27
|
| 3115 |
+
27,5
|
| 3116 |
+
27,1
|
| 3117 |
+
7,7
|
| 3118 |
+
12,27
|
| 3119 |
+
9,27
|
| 3120 |
+
27,27
|
| 3121 |
+
7,7
|
| 3122 |
+
15,15
|
| 3123 |
+
27,14
|
| 3124 |
+
0,0
|
| 3125 |
+
27,27
|
| 3126 |
+
16,27
|
| 3127 |
+
1,1
|
| 3128 |
+
27,3
|
| 3129 |
+
0,0
|
| 3130 |
+
7,27
|
| 3131 |
+
27,27
|
| 3132 |
+
26,0
|
| 3133 |
+
10,27
|
| 3134 |
+
18,18
|
| 3135 |
+
7,27
|
| 3136 |
+
27,27
|
| 3137 |
+
2,2
|
| 3138 |
+
6,6
|
| 3139 |
+
2,7
|
| 3140 |
+
27,27
|
| 3141 |
+
3,2
|
| 3142 |
+
27,27
|
| 3143 |
+
27,27
|
| 3144 |
+
15,13
|
| 3145 |
+
2,2
|
| 3146 |
+
18,18
|
| 3147 |
+
26,27
|
| 3148 |
+
27,27
|
| 3149 |
+
7,7
|
| 3150 |
+
7,27
|
| 3151 |
+
27,27
|
| 3152 |
+
1,27
|
| 3153 |
+
15,15
|
| 3154 |
+
27,27
|
| 3155 |
+
26,26
|
| 3156 |
+
27,27
|
| 3157 |
+
27,27
|
| 3158 |
+
9,13
|
| 3159 |
+
26,26
|
| 3160 |
+
7,7
|
| 3161 |
+
10,10
|
| 3162 |
+
15,0
|
| 3163 |
+
27,27
|
| 3164 |
+
27,27
|
| 3165 |
+
15,15
|
| 3166 |
+
7,7
|
| 3167 |
+
27,18
|
| 3168 |
+
20,27
|
| 3169 |
+
0,0
|
| 3170 |
+
27,10
|
| 3171 |
+
4,0
|
| 3172 |
+
27,20
|
| 3173 |
+
27,27
|
| 3174 |
+
5,17
|
| 3175 |
+
27,6
|
| 3176 |
+
7,7
|
| 3177 |
+
7,7
|
| 3178 |
+
4,4
|
| 3179 |
+
27,5
|
| 3180 |
+
0,27
|
| 3181 |
+
27,27
|
| 3182 |
+
18,18
|
| 3183 |
+
27,10
|
| 3184 |
+
27,27
|
| 3185 |
+
5,5
|
| 3186 |
+
27,27
|
| 3187 |
+
14,14
|
| 3188 |
+
15,13
|
| 3189 |
+
0,0
|
| 3190 |
+
27,27
|
| 3191 |
+
15,15
|
| 3192 |
+
15,15
|
| 3193 |
+
27,27
|
| 3194 |
+
27,27
|
| 3195 |
+
0,0
|
| 3196 |
+
27,27
|
| 3197 |
+
27,27
|
| 3198 |
+
27,7
|
| 3199 |
+
10,10
|
| 3200 |
+
3,10
|
| 3201 |
+
27,27
|
| 3202 |
+
27,0
|
| 3203 |
+
7,7
|
| 3204 |
+
8,17
|
| 3205 |
+
27,7
|
| 3206 |
+
5,5
|
| 3207 |
+
3,2
|
| 3208 |
+
15,15
|
| 3209 |
+
27,27
|
| 3210 |
+
27,27
|
| 3211 |
+
9,18
|
| 3212 |
+
2,2
|
| 3213 |
+
3,27
|
| 3214 |
+
18,1
|
| 3215 |
+
0,0
|
| 3216 |
+
17,1
|
| 3217 |
+
17,17
|
| 3218 |
+
0,0
|
| 3219 |
+
27,27
|
| 3220 |
+
11,1
|
| 3221 |
+
27,7
|
| 3222 |
+
27,27
|
| 3223 |
+
27,27
|
| 3224 |
+
27,27
|
| 3225 |
+
8,8
|
| 3226 |
+
1,1
|
| 3227 |
+
5,5
|
| 3228 |
+
15,15
|
| 3229 |
+
3,3
|
| 3230 |
+
17,17
|
| 3231 |
+
15,15
|
| 3232 |
+
27,27
|
| 3233 |
+
27,0
|
| 3234 |
+
2,2
|
| 3235 |
+
22,26
|
| 3236 |
+
3,7
|
| 3237 |
+
9,27
|
| 3238 |
+
5,5
|
| 3239 |
+
3,27
|
| 3240 |
+
27,27
|
| 3241 |
+
3,27
|
| 3242 |
+
7,26
|
| 3243 |
+
3,3
|
| 3244 |
+
4,4
|
| 3245 |
+
18,18
|
| 3246 |
+
26,27
|
| 3247 |
+
27,27
|
| 3248 |
+
0,1
|
| 3249 |
+
9,25
|
| 3250 |
+
27,27
|
| 3251 |
+
1,4
|
| 3252 |
+
25,25
|
| 3253 |
+
0,0
|
| 3254 |
+
18,18
|
| 3255 |
+
12,3
|
| 3256 |
+
10,10
|
| 3257 |
+
1,1
|
| 3258 |
+
27,27
|
| 3259 |
+
10,7
|
| 3260 |
+
6,27
|
| 3261 |
+
3,27
|
| 3262 |
+
27,27
|
| 3263 |
+
8,2
|
| 3264 |
+
3,2
|
| 3265 |
+
27,9
|
| 3266 |
+
27,27
|
| 3267 |
+
0,0
|
| 3268 |
+
0,0
|
| 3269 |
+
0,0
|
| 3270 |
+
20,17
|
| 3271 |
+
4,10
|
| 3272 |
+
7,7
|
| 3273 |
+
27,27
|
| 3274 |
+
15,15
|
| 3275 |
+
27,27
|
| 3276 |
+
1,1
|
| 3277 |
+
27,27
|
| 3278 |
+
20,27
|
| 3279 |
+
0,0
|
| 3280 |
+
1,1
|
| 3281 |
+
27,13
|
| 3282 |
+
27,27
|
| 3283 |
+
15,0
|
| 3284 |
+
11,27
|
| 3285 |
+
8,27
|
| 3286 |
+
0,0
|
| 3287 |
+
4,10
|
| 3288 |
+
27,13
|
| 3289 |
+
0,0
|
| 3290 |
+
0,0
|
| 3291 |
+
27,27
|
| 3292 |
+
13,15
|
| 3293 |
+
1,2
|
| 3294 |
+
8,8
|
| 3295 |
+
9,27
|
| 3296 |
+
27,7
|
| 3297 |
+
0,0
|
| 3298 |
+
3,11
|
| 3299 |
+
2,27
|
| 3300 |
+
9,2
|
| 3301 |
+
0,0
|
| 3302 |
+
27,27
|
| 3303 |
+
27,27
|
| 3304 |
+
0,0
|
| 3305 |
+
4,4
|
| 3306 |
+
0,0
|
| 3307 |
+
18,18
|
| 3308 |
+
27,18
|
| 3309 |
+
2,27
|
| 3310 |
+
0,0
|
| 3311 |
+
27,27
|
| 3312 |
+
19,6
|
| 3313 |
+
10,10
|
| 3314 |
+
27,27
|
| 3315 |
+
1,1
|
| 3316 |
+
4,9
|
| 3317 |
+
11,11
|
| 3318 |
+
0,0
|
| 3319 |
+
0,0
|
| 3320 |
+
27,27
|
| 3321 |
+
4,7
|
| 3322 |
+
27,7
|
| 3323 |
+
26,2
|
| 3324 |
+
6,26
|
| 3325 |
+
0,13
|
| 3326 |
+
27,27
|
| 3327 |
+
27,17
|
| 3328 |
+
22,27
|
| 3329 |
+
4,4
|
| 3330 |
+
1,1
|
| 3331 |
+
13,26
|
| 3332 |
+
3,3
|
| 3333 |
+
18,18
|
| 3334 |
+
4,27
|
| 3335 |
+
27,27
|
| 3336 |
+
27,27
|
| 3337 |
+
2,2
|
| 3338 |
+
2,26
|
| 3339 |
+
14,27
|
| 3340 |
+
20,27
|
| 3341 |
+
20,20
|
| 3342 |
+
14,14
|
| 3343 |
+
7,7
|
| 3344 |
+
27,27
|
| 3345 |
+
0,0
|
| 3346 |
+
27,27
|
| 3347 |
+
12,2
|
| 3348 |
+
27,27
|
| 3349 |
+
3,10
|
| 3350 |
+
3,27
|
| 3351 |
+
27,27
|
| 3352 |
+
24,24
|
| 3353 |
+
6,7
|
| 3354 |
+
27,27
|
| 3355 |
+
17,17
|
| 3356 |
+
4,4
|
| 3357 |
+
7,6
|
| 3358 |
+
25,25
|
| 3359 |
+
27,27
|
| 3360 |
+
15,13
|
| 3361 |
+
0,0
|
| 3362 |
+
4,0
|
| 3363 |
+
27,7
|
| 3364 |
+
15,15
|
| 3365 |
+
27,0
|
| 3366 |
+
27,27
|
| 3367 |
+
1,1
|
| 3368 |
+
27,10
|
| 3369 |
+
16,24
|
| 3370 |
+
2,27
|
| 3371 |
+
27,27
|
| 3372 |
+
1,1
|
| 3373 |
+
4,20
|
| 3374 |
+
27,27
|
| 3375 |
+
3,3
|
| 3376 |
+
3,27
|
| 3377 |
+
15,15
|
| 3378 |
+
2,3
|
| 3379 |
+
1,1
|
| 3380 |
+
7,26
|
| 3381 |
+
27,27
|
| 3382 |
+
27,27
|
| 3383 |
+
0,0
|
| 3384 |
+
7,7
|
| 3385 |
+
27,27
|
| 3386 |
+
4,0
|
| 3387 |
+
27,27
|
| 3388 |
+
4,0
|
| 3389 |
+
17,17
|
| 3390 |
+
0,0
|
| 3391 |
+
27,27
|
| 3392 |
+
8,8
|
| 3393 |
+
14,14
|
| 3394 |
+
27,27
|
| 3395 |
+
27,7
|
| 3396 |
+
3,27
|
| 3397 |
+
15,15
|
| 3398 |
+
20,5
|
| 3399 |
+
10,27
|
| 3400 |
+
10,27
|
| 3401 |
+
0,0
|
| 3402 |
+
27,27
|
| 3403 |
+
0,0
|
| 3404 |
+
27,5
|
| 3405 |
+
13,0
|
| 3406 |
+
0,0
|
| 3407 |
+
26,27
|
| 3408 |
+
15,15
|
| 3409 |
+
4,27
|
| 3410 |
+
27,27
|
| 3411 |
+
0,0
|
| 3412 |
+
6,27
|
| 3413 |
+
27,17
|
| 3414 |
+
14,2
|
| 3415 |
+
4,27
|
| 3416 |
+
25,25
|
| 3417 |
+
13,27
|
| 3418 |
+
27,4
|
| 3419 |
+
27,27
|
| 3420 |
+
14,9
|
| 3421 |
+
27,4
|
| 3422 |
+
4,4
|
| 3423 |
+
27,27
|
| 3424 |
+
18,18
|
| 3425 |
+
7,7
|
| 3426 |
+
27,27
|
| 3427 |
+
27,27
|
| 3428 |
+
27,27
|
| 3429 |
+
27,27
|
| 3430 |
+
10,10
|
| 3431 |
+
3,14
|
| 3432 |
+
10,27
|
| 3433 |
+
25,2
|
| 3434 |
+
11,11
|
| 3435 |
+
1,0
|
| 3436 |
+
1,1
|
| 3437 |
+
20,20
|
| 3438 |
+
7,7
|
| 3439 |
+
6,7
|
| 3440 |
+
13,27
|
| 3441 |
+
27,27
|
| 3442 |
+
2,2
|
| 3443 |
+
2,2
|
| 3444 |
+
2,2
|
| 3445 |
+
26,26
|
| 3446 |
+
13,4
|
| 3447 |
+
4,4
|
| 3448 |
+
7,27
|
| 3449 |
+
27,27
|
| 3450 |
+
1,1
|
| 3451 |
+
10,1
|
| 3452 |
+
6,27
|
| 3453 |
+
27,27
|
| 3454 |
+
27,27
|
| 3455 |
+
27,3
|
| 3456 |
+
4,27
|
| 3457 |
+
4,4
|
| 3458 |
+
6,4
|
| 3459 |
+
27,2
|
| 3460 |
+
1,1
|
| 3461 |
+
0,0
|
| 3462 |
+
27,27
|
| 3463 |
+
27,27
|
| 3464 |
+
9,20
|
| 3465 |
+
6,6
|
| 3466 |
+
21,0
|
| 3467 |
+
27,27
|
| 3468 |
+
2,3
|
| 3469 |
+
15,0
|
| 3470 |
+
3,27
|
| 3471 |
+
27,27
|
| 3472 |
+
27,27
|
| 3473 |
+
3,3
|
| 3474 |
+
0,0
|
| 3475 |
+
22,27
|
| 3476 |
+
27,4
|
| 3477 |
+
6,6
|
| 3478 |
+
27,27
|
| 3479 |
+
22,27
|
| 3480 |
+
1,1
|
| 3481 |
+
2,2
|
| 3482 |
+
1,1
|
| 3483 |
+
15,15
|
| 3484 |
+
7,14
|
| 3485 |
+
27,27
|
| 3486 |
+
20,20
|
| 3487 |
+
27,27
|
| 3488 |
+
0,20
|
| 3489 |
+
17,8
|
| 3490 |
+
0,15
|
| 3491 |
+
18,25
|
| 3492 |
+
27,27
|
| 3493 |
+
15,0
|
| 3494 |
+
27,27
|
| 3495 |
+
27,17
|
| 3496 |
+
25,25
|
| 3497 |
+
4,4
|
| 3498 |
+
27,5
|
| 3499 |
+
27,27
|
| 3500 |
+
2,2
|
| 3501 |
+
27,27
|
| 3502 |
+
2,2
|
| 3503 |
+
5,27
|
| 3504 |
+
5,4
|
| 3505 |
+
23,0
|
| 3506 |
+
22,4
|
| 3507 |
+
27,27
|
| 3508 |
+
0,18
|
| 3509 |
+
27,3
|
| 3510 |
+
3,3
|
| 3511 |
+
27,15
|
| 3512 |
+
27,27
|
| 3513 |
+
20,27
|
| 3514 |
+
27,10
|
| 3515 |
+
1,27
|
| 3516 |
+
0,0
|
| 3517 |
+
1,1
|
| 3518 |
+
0,0
|
| 3519 |
+
27,6
|
| 3520 |
+
9,9
|
| 3521 |
+
27,27
|
| 3522 |
+
7,7
|
| 3523 |
+
2,2
|
| 3524 |
+
27,27
|
| 3525 |
+
26,26
|
| 3526 |
+
26,7
|
| 3527 |
+
7,27
|
| 3528 |
+
27,27
|
| 3529 |
+
9,9
|
| 3530 |
+
2,3
|
| 3531 |
+
27,27
|
| 3532 |
+
22,22
|
| 3533 |
+
2,2
|
| 3534 |
+
27,27
|
| 3535 |
+
26,26
|
| 3536 |
+
1,1
|
| 3537 |
+
18,18
|
| 3538 |
+
1,0
|
| 3539 |
+
0,0
|
| 3540 |
+
27,27
|
| 3541 |
+
11,11
|
| 3542 |
+
17,17
|
| 3543 |
+
27,27
|
| 3544 |
+
3,3
|
| 3545 |
+
27,27
|
| 3546 |
+
2,2
|
| 3547 |
+
7,7
|
| 3548 |
+
26,26
|
| 3549 |
+
18,18
|
| 3550 |
+
27,27
|
| 3551 |
+
2,2
|
| 3552 |
+
27,27
|
| 3553 |
+
27,27
|
| 3554 |
+
20,20
|
| 3555 |
+
27,27
|
| 3556 |
+
0,0
|
| 3557 |
+
3,6
|
| 3558 |
+
27,6
|
| 3559 |
+
27,27
|
| 3560 |
+
27,7
|
| 3561 |
+
0,27
|
| 3562 |
+
0,0
|
| 3563 |
+
1,1
|
| 3564 |
+
4,20
|
| 3565 |
+
20,20
|
| 3566 |
+
27,27
|
| 3567 |
+
27,4
|
| 3568 |
+
0,0
|
| 3569 |
+
20,5
|
| 3570 |
+
4,27
|
| 3571 |
+
27,27
|
| 3572 |
+
26,26
|
| 3573 |
+
20,20
|
| 3574 |
+
4,2
|
| 3575 |
+
27,27
|
| 3576 |
+
27,27
|
| 3577 |
+
3,17
|
| 3578 |
+
19,5
|
| 3579 |
+
0,0
|
| 3580 |
+
27,1
|
| 3581 |
+
4,27
|
| 3582 |
+
7,7
|
| 3583 |
+
13,0
|
| 3584 |
+
14,7
|
| 3585 |
+
27,27
|
| 3586 |
+
27,27
|
| 3587 |
+
15,7
|
| 3588 |
+
27,27
|
| 3589 |
+
27,27
|
| 3590 |
+
27,7
|
| 3591 |
+
27,27
|
| 3592 |
+
11,11
|
| 3593 |
+
0,18
|
| 3594 |
+
15,15
|
| 3595 |
+
6,7
|
| 3596 |
+
6,6
|
| 3597 |
+
27,27
|
| 3598 |
+
27,27
|
| 3599 |
+
0,0
|
| 3600 |
+
24,24
|
| 3601 |
+
7,7
|
| 3602 |
+
4,27
|
| 3603 |
+
15,15
|
| 3604 |
+
27,27
|
| 3605 |
+
1,1
|
| 3606 |
+
3,27
|
| 3607 |
+
27,0
|
| 3608 |
+
11,27
|
| 3609 |
+
4,27
|
| 3610 |
+
27,27
|
| 3611 |
+
11,11
|
| 3612 |
+
7,7
|
| 3613 |
+
0,0
|
| 3614 |
+
1,1
|
| 3615 |
+
10,27
|
| 3616 |
+
3,2
|
| 3617 |
+
15,15
|
| 3618 |
+
13,27
|
| 3619 |
+
17,0
|
| 3620 |
+
26,27
|
| 3621 |
+
20,20
|
| 3622 |
+
27,27
|
| 3623 |
+
27,27
|
| 3624 |
+
20,27
|
| 3625 |
+
1,27
|
| 3626 |
+
4,4
|
| 3627 |
+
3,27
|
| 3628 |
+
7,7
|
| 3629 |
+
22,27
|
| 3630 |
+
26,26
|
| 3631 |
+
27,27
|
| 3632 |
+
23,4
|
| 3633 |
+
15,15
|
| 3634 |
+
7,7
|
| 3635 |
+
7,7
|
| 3636 |
+
27,27
|
| 3637 |
+
8,27
|
| 3638 |
+
4,27
|
| 3639 |
+
27,25
|
| 3640 |
+
20,26
|
| 3641 |
+
6,27
|
| 3642 |
+
2,27
|
| 3643 |
+
27,27
|
| 3644 |
+
14,14
|
| 3645 |
+
22,22
|
| 3646 |
+
27,27
|
| 3647 |
+
22,25
|
| 3648 |
+
0,15
|
| 3649 |
+
18,18
|
| 3650 |
+
27,7
|
| 3651 |
+
3,3
|
| 3652 |
+
27,27
|
| 3653 |
+
27,4
|
| 3654 |
+
18,0
|
| 3655 |
+
13,27
|
| 3656 |
+
24,9
|
| 3657 |
+
10,27
|
| 3658 |
+
27,27
|
| 3659 |
+
10,27
|
| 3660 |
+
18,18
|
| 3661 |
+
15,0
|
| 3662 |
+
0,0
|
| 3663 |
+
27,6
|
| 3664 |
+
0,0
|
| 3665 |
+
27,27
|
| 3666 |
+
20,27
|
| 3667 |
+
27,10
|
| 3668 |
+
3,9
|
| 3669 |
+
27,27
|
| 3670 |
+
27,27
|
| 3671 |
+
25,25
|
| 3672 |
+
3,3
|
| 3673 |
+
27,0
|
| 3674 |
+
15,15
|
| 3675 |
+
4,27
|
| 3676 |
+
1,1
|
| 3677 |
+
27,27
|
| 3678 |
+
1,1
|
| 3679 |
+
11,27
|
| 3680 |
+
15,15
|
| 3681 |
+
27,7
|
| 3682 |
+
0,13
|
| 3683 |
+
6,7
|
| 3684 |
+
4,20
|
| 3685 |
+
17,17
|
| 3686 |
+
27,10
|
| 3687 |
+
0,0
|
| 3688 |
+
9,27
|
| 3689 |
+
8,18
|
| 3690 |
+
22,26
|
| 3691 |
+
0,0
|
| 3692 |
+
0,0
|
| 3693 |
+
27,2
|
| 3694 |
+
11,11
|
| 3695 |
+
27,27
|
| 3696 |
+
11,3
|
| 3697 |
+
8,25
|
| 3698 |
+
10,1
|
| 3699 |
+
2,27
|
| 3700 |
+
4,4
|
| 3701 |
+
6,7
|
| 3702 |
+
4,27
|
| 3703 |
+
27,2
|
| 3704 |
+
24,20
|
| 3705 |
+
20,1
|
| 3706 |
+
27,27
|
| 3707 |
+
27,27
|
| 3708 |
+
15,15
|
| 3709 |
+
15,20
|
| 3710 |
+
10,10
|
| 3711 |
+
27,27
|
| 3712 |
+
2,3
|
| 3713 |
+
10,27
|
| 3714 |
+
8,8
|
| 3715 |
+
0,0
|
| 3716 |
+
22,0
|
| 3717 |
+
18,18
|
| 3718 |
+
0,0
|
| 3719 |
+
0,0
|
| 3720 |
+
0,0
|
| 3721 |
+
0,0
|
| 3722 |
+
20,5
|
| 3723 |
+
27,27
|
| 3724 |
+
0,0
|
| 3725 |
+
5,0
|
| 3726 |
+
3,4
|
| 3727 |
+
2,2
|
| 3728 |
+
9,27
|
| 3729 |
+
4,4
|
| 3730 |
+
8,0
|
| 3731 |
+
27,27
|
| 3732 |
+
9,3
|
| 3733 |
+
27,27
|
| 3734 |
+
5,27
|
| 3735 |
+
18,18
|
| 3736 |
+
4,17
|
| 3737 |
+
2,2
|
| 3738 |
+
27,27
|
| 3739 |
+
9,27
|
| 3740 |
+
14,14
|
| 3741 |
+
27,27
|
| 3742 |
+
26,26
|
| 3743 |
+
3,9
|
| 3744 |
+
15,0
|
| 3745 |
+
7,7
|
| 3746 |
+
0,0
|
| 3747 |
+
15,15
|
| 3748 |
+
4,4
|
| 3749 |
+
2,27
|
| 3750 |
+
27,3
|
| 3751 |
+
15,15
|
| 3752 |
+
18,18
|
| 3753 |
+
1,1
|
| 3754 |
+
4,27
|
| 3755 |
+
0,0
|
| 3756 |
+
27,27
|
| 3757 |
+
18,18
|
| 3758 |
+
27,7
|
| 3759 |
+
10,27
|
| 3760 |
+
15,15
|
| 3761 |
+
20,27
|
| 3762 |
+
2,2
|
| 3763 |
+
2,2
|
| 3764 |
+
0,0
|
| 3765 |
+
27,27
|
| 3766 |
+
2,27
|
| 3767 |
+
4,4
|
| 3768 |
+
27,11
|
| 3769 |
+
26,7
|
| 3770 |
+
1,1
|
| 3771 |
+
27,27
|
| 3772 |
+
6,7
|
| 3773 |
+
1,1
|
| 3774 |
+
10,0
|
| 3775 |
+
0,0
|
| 3776 |
+
2,3
|
| 3777 |
+
7,7
|
| 3778 |
+
26,26
|
| 3779 |
+
13,4
|
| 3780 |
+
27,27
|
| 3781 |
+
9,27
|
| 3782 |
+
15,15
|
| 3783 |
+
1,1
|
| 3784 |
+
27,27
|
| 3785 |
+
24,24
|
| 3786 |
+
8,17
|
| 3787 |
+
7,27
|
| 3788 |
+
22,11
|
| 3789 |
+
18,18
|
| 3790 |
+
1,1
|
| 3791 |
+
10,27
|
| 3792 |
+
3,10
|
| 3793 |
+
6,7
|
| 3794 |
+
4,4
|
| 3795 |
+
27,5
|
| 3796 |
+
27,9
|
| 3797 |
+
27,7
|
| 3798 |
+
4,4
|
| 3799 |
+
27,18
|
| 3800 |
+
15,15
|
| 3801 |
+
3,27
|
| 3802 |
+
27,0
|
| 3803 |
+
0,0
|
| 3804 |
+
1,1
|
| 3805 |
+
0,20
|
| 3806 |
+
27,27
|
| 3807 |
+
3,4
|
| 3808 |
+
1,1
|
| 3809 |
+
4,18
|
| 3810 |
+
4,4
|
| 3811 |
+
10,25
|
| 3812 |
+
15,15
|
| 3813 |
+
17,15
|
| 3814 |
+
27,4
|
| 3815 |
+
20,20
|
| 3816 |
+
15,0
|
| 3817 |
+
1,1
|
| 3818 |
+
4,27
|
| 3819 |
+
27,27
|
| 3820 |
+
4,27
|
| 3821 |
+
22,27
|
| 3822 |
+
15,15
|
| 3823 |
+
3,15
|
| 3824 |
+
17,18
|
| 3825 |
+
9,3
|
| 3826 |
+
27,27
|
| 3827 |
+
27,4
|
| 3828 |
+
27,0
|
| 3829 |
+
17,17
|
| 3830 |
+
26,27
|
| 3831 |
+
9,27
|
| 3832 |
+
27,10
|
| 3833 |
+
27,27
|
| 3834 |
+
9,6
|
| 3835 |
+
19,14
|
| 3836 |
+
0,0
|
| 3837 |
+
15,0
|
| 3838 |
+
4,6
|
| 3839 |
+
1,1
|
| 3840 |
+
5,27
|
| 3841 |
+
1,1
|
| 3842 |
+
27,27
|
| 3843 |
+
27,5
|
| 3844 |
+
4,17
|
| 3845 |
+
7,6
|
| 3846 |
+
27,27
|
| 3847 |
+
27,27
|
| 3848 |
+
10,10
|
| 3849 |
+
15,15
|
| 3850 |
+
27,27
|
| 3851 |
+
22,27
|
| 3852 |
+
12,12
|
| 3853 |
+
4,27
|
| 3854 |
+
17,17
|
| 3855 |
+
10,27
|
| 3856 |
+
14,14
|
| 3857 |
+
10,27
|
| 3858 |
+
20,20
|
| 3859 |
+
27,27
|
| 3860 |
+
25,0
|
| 3861 |
+
8,13
|
| 3862 |
+
27,27
|
| 3863 |
+
27,27
|
| 3864 |
+
6,7
|
| 3865 |
+
2,3
|
| 3866 |
+
17,18
|
| 3867 |
+
7,27
|
| 3868 |
+
18,27
|
| 3869 |
+
0,27
|
| 3870 |
+
8,8
|
| 3871 |
+
27,27
|
| 3872 |
+
18,18
|
| 3873 |
+
4,4
|
| 3874 |
+
10,6
|
| 3875 |
+
8,8
|
| 3876 |
+
7,7
|
| 3877 |
+
11,11
|
| 3878 |
+
0,0
|
| 3879 |
+
27,27
|
| 3880 |
+
27,27
|
| 3881 |
+
15,15
|
| 3882 |
+
7,27
|
| 3883 |
+
11,3
|
| 3884 |
+
27,27
|
| 3885 |
+
2,2
|
| 3886 |
+
27,27
|
| 3887 |
+
26,27
|
| 3888 |
+
27,27
|
| 3889 |
+
17,17
|
| 3890 |
+
3,27
|
| 3891 |
+
18,18
|
| 3892 |
+
7,27
|
| 3893 |
+
27,6
|
| 3894 |
+
17,17
|
| 3895 |
+
3,11
|
| 3896 |
+
18,18
|
| 3897 |
+
27,4
|
| 3898 |
+
1,1
|
| 3899 |
+
7,6
|
| 3900 |
+
3,3
|
| 3901 |
+
10,27
|
| 3902 |
+
20,20
|
| 3903 |
+
22,10
|
| 3904 |
+
0,0
|
| 3905 |
+
27,27
|
| 3906 |
+
0,0
|
| 3907 |
+
27,27
|
| 3908 |
+
27,5
|
| 3909 |
+
1,1
|
| 3910 |
+
22,22
|
| 3911 |
+
27,27
|
| 3912 |
+
3,3
|
| 3913 |
+
0,0
|
| 3914 |
+
15,15
|
| 3915 |
+
27,10
|
| 3916 |
+
27,27
|
| 3917 |
+
27,27
|
| 3918 |
+
22,27
|
| 3919 |
+
27,10
|
| 3920 |
+
27,27
|
| 3921 |
+
4,5
|
| 3922 |
+
15,15
|
| 3923 |
+
3,27
|
| 3924 |
+
7,7
|
| 3925 |
+
27,3
|
| 3926 |
+
4,27
|
| 3927 |
+
6,6
|
| 3928 |
+
0,0
|
| 3929 |
+
6,7
|
| 3930 |
+
14,11
|
| 3931 |
+
5,27
|
| 3932 |
+
27,0
|
| 3933 |
+
27,27
|
| 3934 |
+
7,27
|
| 3935 |
+
27,10
|
| 3936 |
+
15,15
|
| 3937 |
+
22,22
|
| 3938 |
+
15,15
|
| 3939 |
+
27,27
|
| 3940 |
+
2,2
|
| 3941 |
+
22,6
|
| 3942 |
+
27,9
|
| 3943 |
+
4,3
|
| 3944 |
+
0,0
|
| 3945 |
+
1,17
|
| 3946 |
+
10,27
|
| 3947 |
+
4,27
|
| 3948 |
+
0,0
|
| 3949 |
+
27,27
|
| 3950 |
+
27,27
|
| 3951 |
+
27,27
|
| 3952 |
+
6,6
|
| 3953 |
+
3,27
|
| 3954 |
+
22,1
|
| 3955 |
+
27,27
|
| 3956 |
+
27,7
|
| 3957 |
+
0,0
|
| 3958 |
+
27,27
|
| 3959 |
+
2,27
|
| 3960 |
+
4,4
|
| 3961 |
+
9,27
|
| 3962 |
+
3,27
|
| 3963 |
+
14,14
|
| 3964 |
+
6,0
|
| 3965 |
+
27,10
|
| 3966 |
+
10,10
|
| 3967 |
+
20,15
|
| 3968 |
+
27,27
|
| 3969 |
+
1,1
|
| 3970 |
+
15,1
|
| 3971 |
+
10,10
|
| 3972 |
+
27,18
|
| 3973 |
+
0,0
|
| 3974 |
+
10,10
|
| 3975 |
+
1,1
|
| 3976 |
+
27,27
|
| 3977 |
+
17,4
|
| 3978 |
+
27,1
|
| 3979 |
+
13,17
|
| 3980 |
+
27,27
|
| 3981 |
+
27,27
|
| 3982 |
+
2,2
|
| 3983 |
+
5,27
|
| 3984 |
+
27,27
|
| 3985 |
+
27,27
|
| 3986 |
+
2,3
|
| 3987 |
+
5,5
|
| 3988 |
+
27,27
|
| 3989 |
+
1,1
|
| 3990 |
+
9,27
|
| 3991 |
+
2,2
|
| 3992 |
+
4,27
|
| 3993 |
+
11,10
|
| 3994 |
+
27,27
|
| 3995 |
+
27,27
|
| 3996 |
+
27,7
|
| 3997 |
+
0,0
|
| 3998 |
+
18,18
|
| 3999 |
+
1,1
|
| 4000 |
+
0,0
|
| 4001 |
+
25,25
|
| 4002 |
+
7,2
|
| 4003 |
+
27,27
|
| 4004 |
+
5,27
|
| 4005 |
+
17,18
|
| 4006 |
+
20,27
|
| 4007 |
+
27,27
|
| 4008 |
+
27,27
|
| 4009 |
+
27,2
|
| 4010 |
+
26,26
|
| 4011 |
+
18,18
|
| 4012 |
+
27,0
|
| 4013 |
+
10,27
|
| 4014 |
+
27,27
|
| 4015 |
+
16,26
|
| 4016 |
+
27,27
|
| 4017 |
+
10,6
|
| 4018 |
+
0,0
|
| 4019 |
+
27,27
|
| 4020 |
+
26,26
|
| 4021 |
+
2,27
|
| 4022 |
+
17,17
|
| 4023 |
+
13,13
|
| 4024 |
+
5,10
|
| 4025 |
+
10,10
|
| 4026 |
+
4,4
|
| 4027 |
+
0,0
|
| 4028 |
+
27,27
|
| 4029 |
+
7,7
|
| 4030 |
+
14,27
|
| 4031 |
+
9,9
|
| 4032 |
+
1,0
|
| 4033 |
+
9,3
|
| 4034 |
+
27,7
|
| 4035 |
+
1,1
|
| 4036 |
+
27,6
|
| 4037 |
+
27,27
|
| 4038 |
+
18,18
|
| 4039 |
+
27,27
|
| 4040 |
+
6,7
|
| 4041 |
+
8,8
|
| 4042 |
+
14,14
|
| 4043 |
+
2,2
|
| 4044 |
+
3,2
|
| 4045 |
+
5,5
|
| 4046 |
+
0,0
|
| 4047 |
+
15,17
|
| 4048 |
+
27,27
|
| 4049 |
+
1,1
|
| 4050 |
+
3,18
|
| 4051 |
+
27,27
|
| 4052 |
+
15,15
|
| 4053 |
+
20,0
|
| 4054 |
+
27,27
|
| 4055 |
+
4,27
|
| 4056 |
+
3,27
|
| 4057 |
+
1,1
|
| 4058 |
+
18,18
|
| 4059 |
+
8,20
|
| 4060 |
+
15,15
|
| 4061 |
+
24,1
|
| 4062 |
+
9,15
|
| 4063 |
+
27,10
|
| 4064 |
+
8,18
|
| 4065 |
+
2,2
|
| 4066 |
+
1,27
|
| 4067 |
+
27,27
|
| 4068 |
+
10,27
|
| 4069 |
+
7,27
|
| 4070 |
+
10,27
|
| 4071 |
+
3,7
|
| 4072 |
+
25,25
|
| 4073 |
+
18,18
|
| 4074 |
+
27,27
|
| 4075 |
+
7,7
|
| 4076 |
+
10,10
|
| 4077 |
+
4,5
|
| 4078 |
+
4,4
|
| 4079 |
+
7,27
|
| 4080 |
+
27,4
|
| 4081 |
+
27,27
|
| 4082 |
+
27,3
|
| 4083 |
+
27,27
|
| 4084 |
+
0,0
|
| 4085 |
+
0,0
|
| 4086 |
+
27,27
|
| 4087 |
+
9,6
|
| 4088 |
+
4,0
|
| 4089 |
+
26,26
|
| 4090 |
+
16,27
|
| 4091 |
+
10,26
|
| 4092 |
+
17,17
|
| 4093 |
+
27,27
|
| 4094 |
+
0,1
|
| 4095 |
+
17,17
|
| 4096 |
+
0,0
|
| 4097 |
+
26,26
|
| 4098 |
+
27,27
|
| 4099 |
+
27,27
|
| 4100 |
+
2,27
|
| 4101 |
+
5,17
|
| 4102 |
+
1,1
|
| 4103 |
+
2,3
|
| 4104 |
+
9,15
|
| 4105 |
+
0,0
|
| 4106 |
+
18,27
|
| 4107 |
+
5,27
|
| 4108 |
+
5,20
|
| 4109 |
+
24,24
|
| 4110 |
+
0,0
|
| 4111 |
+
27,27
|
| 4112 |
+
14,14
|
| 4113 |
+
6,6
|
| 4114 |
+
7,7
|
| 4115 |
+
17,17
|
| 4116 |
+
27,27
|
| 4117 |
+
9,27
|
| 4118 |
+
18,18
|
| 4119 |
+
1,1
|
| 4120 |
+
10,10
|
| 4121 |
+
1,1
|
| 4122 |
+
27,27
|
| 4123 |
+
2,27
|
| 4124 |
+
6,7
|
| 4125 |
+
27,17
|
| 4126 |
+
27,27
|
| 4127 |
+
8,27
|
| 4128 |
+
27,3
|
| 4129 |
+
4,4
|
| 4130 |
+
17,17
|
| 4131 |
+
4,26
|
| 4132 |
+
7,27
|
| 4133 |
+
3,27
|
| 4134 |
+
1,1
|
| 4135 |
+
7,7
|
| 4136 |
+
10,10
|
| 4137 |
+
4,4
|
| 4138 |
+
27,2
|
| 4139 |
+
27,27
|
| 4140 |
+
10,10
|
| 4141 |
+
3,4
|
| 4142 |
+
1,1
|
| 4143 |
+
18,18
|
| 4144 |
+
6,3
|
| 4145 |
+
27,27
|
| 4146 |
+
3,18
|
| 4147 |
+
27,27
|
| 4148 |
+
10,10
|
| 4149 |
+
24,24
|
| 4150 |
+
4,27
|
| 4151 |
+
24,24
|
| 4152 |
+
27,7
|
| 4153 |
+
24,24
|
| 4154 |
+
25,25
|
| 4155 |
+
27,5
|
| 4156 |
+
8,17
|
| 4157 |
+
18,18
|
| 4158 |
+
27,25
|
| 4159 |
+
6,7
|
| 4160 |
+
9,27
|
| 4161 |
+
10,24
|
| 4162 |
+
2,10
|
| 4163 |
+
27,27
|
| 4164 |
+
27,2
|
| 4165 |
+
27,27
|
| 4166 |
+
27,27
|
| 4167 |
+
27,27
|
| 4168 |
+
10,27
|
| 4169 |
+
24,24
|
| 4170 |
+
2,11
|
| 4171 |
+
27,27
|
| 4172 |
+
7,7
|
| 4173 |
+
27,27
|
| 4174 |
+
1,1
|
| 4175 |
+
27,27
|
| 4176 |
+
27,27
|
| 4177 |
+
2,7
|
| 4178 |
+
20,15
|
| 4179 |
+
0,0
|
| 4180 |
+
27,27
|
| 4181 |
+
0,3
|
| 4182 |
+
2,27
|
| 4183 |
+
3,10
|
| 4184 |
+
0,13
|
| 4185 |
+
25,25
|
| 4186 |
+
13,13
|
| 4187 |
+
27,27
|
| 4188 |
+
27,27
|
| 4189 |
+
22,26
|
| 4190 |
+
12,26
|
| 4191 |
+
1,1
|
| 4192 |
+
26,7
|
| 4193 |
+
27,27
|
| 4194 |
+
0,17
|
| 4195 |
+
27,27
|
| 4196 |
+
27,27
|
| 4197 |
+
15,15
|
| 4198 |
+
0,0
|
| 4199 |
+
17,17
|
| 4200 |
+
27,1
|
| 4201 |
+
2,7
|
| 4202 |
+
1,1
|
| 4203 |
+
21,18
|
| 4204 |
+
7,7
|
| 4205 |
+
27,27
|
| 4206 |
+
4,4
|
| 4207 |
+
27,27
|
| 4208 |
+
27,27
|
| 4209 |
+
7,7
|
| 4210 |
+
27,27
|
| 4211 |
+
27,0
|
| 4212 |
+
27,0
|
| 4213 |
+
27,27
|
| 4214 |
+
14,14
|
| 4215 |
+
9,3
|
| 4216 |
+
18,18
|
| 4217 |
+
15,15
|
| 4218 |
+
4,4
|
| 4219 |
+
27,27
|
| 4220 |
+
15,15
|
| 4221 |
+
27,27
|
| 4222 |
+
10,0
|
| 4223 |
+
7,7
|
| 4224 |
+
20,20
|
| 4225 |
+
9,27
|
| 4226 |
+
4,27
|
| 4227 |
+
13,27
|
| 4228 |
+
15,15
|
| 4229 |
+
27,27
|
| 4230 |
+
6,27
|
| 4231 |
+
3,27
|
| 4232 |
+
11,2
|
| 4233 |
+
27,1
|
| 4234 |
+
0,0
|
| 4235 |
+
9,9
|
| 4236 |
+
27,10
|
| 4237 |
+
18,18
|
| 4238 |
+
1,1
|
| 4239 |
+
4,27
|
| 4240 |
+
27,27
|
| 4241 |
+
7,7
|
| 4242 |
+
2,6
|
| 4243 |
+
27,27
|
| 4244 |
+
27,0
|
| 4245 |
+
15,15
|
| 4246 |
+
7,27
|
| 4247 |
+
20,20
|
| 4248 |
+
27,27
|
| 4249 |
+
27,27
|
| 4250 |
+
27,27
|
| 4251 |
+
27,27
|
| 4252 |
+
10,27
|
| 4253 |
+
10,10
|
| 4254 |
+
27,27
|
| 4255 |
+
25,25
|
| 4256 |
+
27,27
|
| 4257 |
+
0,18
|
| 4258 |
+
27,2
|
| 4259 |
+
13,13
|
| 4260 |
+
15,15
|
| 4261 |
+
6,7
|
| 4262 |
+
1,2
|
| 4263 |
+
20,20
|
| 4264 |
+
9,0
|
| 4265 |
+
27,27
|
| 4266 |
+
10,3
|
| 4267 |
+
4,0
|
| 4268 |
+
15,15
|
| 4269 |
+
15,10
|
| 4270 |
+
7,7
|
| 4271 |
+
15,15
|
| 4272 |
+
9,3
|
| 4273 |
+
0,0
|
| 4274 |
+
0,0
|
| 4275 |
+
0,27
|
| 4276 |
+
27,27
|
| 4277 |
+
27,27
|
| 4278 |
+
17,27
|
| 4279 |
+
13,27
|
| 4280 |
+
2,11
|
| 4281 |
+
27,27
|
| 4282 |
+
27,27
|
| 4283 |
+
0,0
|
| 4284 |
+
9,27
|
| 4285 |
+
7,7
|
| 4286 |
+
27,27
|
| 4287 |
+
4,4
|
| 4288 |
+
27,27
|
| 4289 |
+
1,1
|
| 4290 |
+
27,27
|
| 4291 |
+
4,1
|
| 4292 |
+
25,27
|
| 4293 |
+
18,18
|
| 4294 |
+
20,20
|
| 4295 |
+
27,27
|
| 4296 |
+
27,27
|
| 4297 |
+
27,27
|
| 4298 |
+
7,27
|
| 4299 |
+
24,24
|
| 4300 |
+
0,0
|
| 4301 |
+
9,9
|
| 4302 |
+
17,27
|
| 4303 |
+
17,17
|
| 4304 |
+
4,27
|
| 4305 |
+
3,27
|
| 4306 |
+
22,9
|
| 4307 |
+
11,11
|
| 4308 |
+
0,0
|
| 4309 |
+
27,27
|
| 4310 |
+
7,7
|
| 4311 |
+
27,27
|
| 4312 |
+
7,7
|
| 4313 |
+
5,5
|
| 4314 |
+
9,3
|
| 4315 |
+
27,10
|
| 4316 |
+
25,27
|
| 4317 |
+
6,6
|
| 4318 |
+
27,27
|
| 4319 |
+
27,27
|
| 4320 |
+
27,27
|
| 4321 |
+
5,20
|
| 4322 |
+
27,27
|
| 4323 |
+
8,8
|
| 4324 |
+
27,3
|
| 4325 |
+
4,4
|
| 4326 |
+
27,27
|
| 4327 |
+
27,27
|
| 4328 |
+
10,11
|
| 4329 |
+
0,0
|
| 4330 |
+
10,27
|
| 4331 |
+
18,18
|
| 4332 |
+
27,26
|
| 4333 |
+
3,7
|
| 4334 |
+
18,7
|
| 4335 |
+
4,27
|
| 4336 |
+
0,0
|
| 4337 |
+
6,7
|
| 4338 |
+
6,6
|
| 4339 |
+
5,27
|
| 4340 |
+
0,18
|
| 4341 |
+
27,27
|
| 4342 |
+
27,27
|
| 4343 |
+
24,24
|
| 4344 |
+
2,2
|
| 4345 |
+
27,27
|
| 4346 |
+
7,7
|
| 4347 |
+
27,27
|
| 4348 |
+
27,1
|
| 4349 |
+
10,20
|
| 4350 |
+
27,7
|
| 4351 |
+
1,1
|
| 4352 |
+
0,0
|
| 4353 |
+
0,0
|
| 4354 |
+
27,27
|
| 4355 |
+
3,27
|
| 4356 |
+
6,6
|
| 4357 |
+
5,4
|
| 4358 |
+
0,0
|
| 4359 |
+
1,1
|
| 4360 |
+
27,27
|
| 4361 |
+
3,27
|
| 4362 |
+
5,5
|
| 4363 |
+
27,27
|
| 4364 |
+
26,26
|
| 4365 |
+
0,0
|
| 4366 |
+
7,7
|
| 4367 |
+
10,18
|
| 4368 |
+
19,27
|
| 4369 |
+
15,15
|
| 4370 |
+
6,6
|
| 4371 |
+
3,3
|
| 4372 |
+
0,0
|
| 4373 |
+
2,1
|
| 4374 |
+
1,1
|
| 4375 |
+
17,0
|
| 4376 |
+
8,20
|
| 4377 |
+
10,10
|
| 4378 |
+
0,0
|
| 4379 |
+
4,0
|
| 4380 |
+
3,18
|
| 4381 |
+
6,7
|
| 4382 |
+
3,2
|
| 4383 |
+
3,27
|
| 4384 |
+
27,27
|
| 4385 |
+
4,27
|
| 4386 |
+
7,27
|
| 4387 |
+
3,27
|
| 4388 |
+
11,3
|
| 4389 |
+
27,27
|
| 4390 |
+
18,18
|
| 4391 |
+
18,18
|
| 4392 |
+
4,4
|
| 4393 |
+
27,10
|
| 4394 |
+
27,27
|
| 4395 |
+
25,9
|
| 4396 |
+
25,25
|
| 4397 |
+
27,4
|
| 4398 |
+
3,3
|
| 4399 |
+
9,9
|
| 4400 |
+
1,27
|
| 4401 |
+
4,24
|
| 4402 |
+
4,4
|
| 4403 |
+
3,27
|
| 4404 |
+
27,27
|
| 4405 |
+
4,27
|
| 4406 |
+
18,18
|
| 4407 |
+
4,4
|
| 4408 |
+
27,27
|
| 4409 |
+
0,18
|
| 4410 |
+
27,27
|
| 4411 |
+
4,4
|
| 4412 |
+
5,4
|
| 4413 |
+
26,27
|
| 4414 |
+
1,1
|
| 4415 |
+
1,1
|
| 4416 |
+
27,27
|
| 4417 |
+
8,18
|
| 4418 |
+
0,0
|
| 4419 |
+
27,1
|
| 4420 |
+
17,0
|
| 4421 |
+
20,8
|
| 4422 |
+
7,27
|
| 4423 |
+
27,2
|
| 4424 |
+
27,27
|
| 4425 |
+
14,14
|
| 4426 |
+
27,27
|
| 4427 |
+
5,5
|
| 4428 |
+
3,2
|
| 4429 |
+
27,2
|
| 4430 |
+
15,15
|
| 4431 |
+
4,4
|
| 4432 |
+
17,7
|
| 4433 |
+
4,1
|
| 4434 |
+
14,14
|
| 4435 |
+
27,27
|
| 4436 |
+
2,27
|
| 4437 |
+
17,18
|
| 4438 |
+
1,1
|
| 4439 |
+
27,27
|
| 4440 |
+
4,27
|
| 4441 |
+
27,7
|
| 4442 |
+
0,0
|
| 4443 |
+
27,2
|
| 4444 |
+
27,27
|
| 4445 |
+
25,25
|
| 4446 |
+
27,14
|
| 4447 |
+
27,0
|
| 4448 |
+
4,27
|
| 4449 |
+
27,27
|
| 4450 |
+
1,1
|
| 4451 |
+
11,11
|
| 4452 |
+
27,27
|
| 4453 |
+
27,9
|
| 4454 |
+
6,6
|
| 4455 |
+
9,27
|
| 4456 |
+
18,18
|
| 4457 |
+
25,27
|
| 4458 |
+
13,13
|
| 4459 |
+
27,7
|
| 4460 |
+
27,26
|
| 4461 |
+
0,0
|
| 4462 |
+
17,17
|
| 4463 |
+
5,5
|
| 4464 |
+
4,4
|
| 4465 |
+
27,10
|
| 4466 |
+
22,27
|
| 4467 |
+
17,0
|
| 4468 |
+
1,1
|
| 4469 |
+
27,0
|
| 4470 |
+
15,15
|
| 4471 |
+
15,15
|
| 4472 |
+
27,27
|
| 4473 |
+
11,4
|
| 4474 |
+
27,27
|
| 4475 |
+
15,15
|
| 4476 |
+
27,17
|
| 4477 |
+
8,13
|
| 4478 |
+
5,15
|
| 4479 |
+
0,0
|
| 4480 |
+
27,27
|
| 4481 |
+
0,0
|
| 4482 |
+
11,1
|
| 4483 |
+
15,15
|
| 4484 |
+
27,27
|
| 4485 |
+
27,27
|
| 4486 |
+
9,10
|
| 4487 |
+
6,6
|
| 4488 |
+
27,27
|
| 4489 |
+
14,14
|
| 4490 |
+
15,0
|
| 4491 |
+
4,4
|
| 4492 |
+
3,3
|
| 4493 |
+
25,25
|
| 4494 |
+
10,0
|
| 4495 |
+
27,27
|
| 4496 |
+
27,27
|
| 4497 |
+
27,27
|
| 4498 |
+
27,27
|
| 4499 |
+
26,27
|
| 4500 |
+
27,27
|
| 4501 |
+
9,8
|
| 4502 |
+
3,3
|
| 4503 |
+
7,7
|
| 4504 |
+
5,5
|
| 4505 |
+
27,27
|
| 4506 |
+
27,4
|
| 4507 |
+
6,6
|
| 4508 |
+
14,14
|
| 4509 |
+
22,13
|
| 4510 |
+
10,9
|
| 4511 |
+
7,25
|
| 4512 |
+
22,12
|
| 4513 |
+
27,27
|
| 4514 |
+
27,27
|
| 4515 |
+
27,27
|
| 4516 |
+
14,27
|
| 4517 |
+
27,10
|
| 4518 |
+
6,7
|
| 4519 |
+
27,4
|
| 4520 |
+
27,5
|
| 4521 |
+
0,0
|
| 4522 |
+
25,25
|
| 4523 |
+
27,27
|
| 4524 |
+
15,15
|
| 4525 |
+
27,27
|
| 4526 |
+
3,2
|
| 4527 |
+
3,27
|
| 4528 |
+
20,20
|
| 4529 |
+
15,15
|
| 4530 |
+
6,6
|
| 4531 |
+
27,27
|
| 4532 |
+
27,27
|
| 4533 |
+
10,10
|
| 4534 |
+
15,15
|
| 4535 |
+
27,27
|
| 4536 |
+
27,27
|
| 4537 |
+
6,6
|
| 4538 |
+
7,7
|
| 4539 |
+
17,27
|
| 4540 |
+
0,7
|
| 4541 |
+
2,27
|
| 4542 |
+
27,27
|
| 4543 |
+
15,15
|
| 4544 |
+
27,27
|
| 4545 |
+
2,2
|
| 4546 |
+
14,14
|
| 4547 |
+
0,0
|
| 4548 |
+
4,27
|
| 4549 |
+
27,27
|
| 4550 |
+
19,7
|
| 4551 |
+
27,4
|
| 4552 |
+
22,27
|
| 4553 |
+
25,24
|
| 4554 |
+
10,27
|
| 4555 |
+
5,5
|
| 4556 |
+
27,27
|
| 4557 |
+
13,13
|
| 4558 |
+
27,2
|
| 4559 |
+
9,9
|
| 4560 |
+
27,27
|
| 4561 |
+
2,27
|
| 4562 |
+
27,27
|
| 4563 |
+
27,0
|
| 4564 |
+
0,13
|
| 4565 |
+
9,26
|
| 4566 |
+
0,0
|
| 4567 |
+
10,10
|
| 4568 |
+
20,27
|
| 4569 |
+
7,0
|
| 4570 |
+
27,27
|
| 4571 |
+
27,7
|
| 4572 |
+
6,6
|
| 4573 |
+
6,27
|
| 4574 |
+
0,4
|
| 4575 |
+
27,27
|
| 4576 |
+
25,25
|
| 4577 |
+
27,27
|
| 4578 |
+
27,27
|
| 4579 |
+
14,14
|
| 4580 |
+
27,27
|
| 4581 |
+
27,27
|
| 4582 |
+
6,9
|
| 4583 |
+
27,27
|
| 4584 |
+
4,15
|
| 4585 |
+
18,18
|
| 4586 |
+
7,26
|
| 4587 |
+
9,3
|
| 4588 |
+
0,0
|
| 4589 |
+
25,0
|
| 4590 |
+
24,24
|
| 4591 |
+
10,10
|
| 4592 |
+
1,1
|
| 4593 |
+
3,7
|
| 4594 |
+
27,27
|
| 4595 |
+
27,27
|
| 4596 |
+
27,27
|
| 4597 |
+
27,27
|
| 4598 |
+
26,26
|
| 4599 |
+
6,6
|
| 4600 |
+
4,27
|
| 4601 |
+
27,27
|
| 4602 |
+
27,27
|
| 4603 |
+
2,27
|
| 4604 |
+
7,7
|
| 4605 |
+
1,17
|
| 4606 |
+
4,27
|
| 4607 |
+
5,4
|
| 4608 |
+
27,2
|
| 4609 |
+
27,27
|
| 4610 |
+
4,4
|
| 4611 |
+
0,0
|
| 4612 |
+
1,1
|
| 4613 |
+
0,0
|
| 4614 |
+
7,20
|
| 4615 |
+
2,2
|
| 4616 |
+
3,2
|
| 4617 |
+
27,27
|
| 4618 |
+
6,27
|
| 4619 |
+
27,3
|
| 4620 |
+
4,4
|
| 4621 |
+
27,0
|
| 4622 |
+
27,27
|
| 4623 |
+
27,10
|
| 4624 |
+
14,11
|
| 4625 |
+
27,27
|
| 4626 |
+
27,27
|
| 4627 |
+
27,27
|
| 4628 |
+
27,0
|
| 4629 |
+
26,26
|
| 4630 |
+
25,27
|
| 4631 |
+
0,0
|
| 4632 |
+
0,0
|
| 4633 |
+
18,20
|
| 4634 |
+
0,15
|
| 4635 |
+
6,6
|
| 4636 |
+
27,27
|
| 4637 |
+
27,17
|
| 4638 |
+
1,1
|
| 4639 |
+
27,27
|
| 4640 |
+
4,4
|
| 4641 |
+
15,15
|
| 4642 |
+
7,26
|
| 4643 |
+
12,3
|
| 4644 |
+
27,5
|
| 4645 |
+
27,27
|
| 4646 |
+
27,6
|
| 4647 |
+
9,9
|
| 4648 |
+
15,15
|
| 4649 |
+
27,0
|
| 4650 |
+
24,27
|
| 4651 |
+
27,27
|
| 4652 |
+
0,0
|
| 4653 |
+
3,27
|
| 4654 |
+
27,27
|
| 4655 |
+
3,27
|
| 4656 |
+
10,27
|
| 4657 |
+
27,7
|
| 4658 |
+
4,27
|
| 4659 |
+
0,0
|
| 4660 |
+
0,17
|
| 4661 |
+
27,27
|
| 4662 |
+
21,0
|
| 4663 |
+
20,15
|
| 4664 |
+
13,13
|
| 4665 |
+
10,2
|
| 4666 |
+
15,20
|
| 4667 |
+
1,1
|
| 4668 |
+
0,0
|
| 4669 |
+
4,27
|
| 4670 |
+
10,18
|
| 4671 |
+
9,0
|
| 4672 |
+
10,10
|
| 4673 |
+
13,7
|
| 4674 |
+
27,27
|
| 4675 |
+
1,1
|
| 4676 |
+
26,0
|
| 4677 |
+
25,25
|
| 4678 |
+
10,10
|
| 4679 |
+
0,0
|
| 4680 |
+
2,2
|
| 4681 |
+
6,7
|
| 4682 |
+
0,0
|
| 4683 |
+
3,6
|
| 4684 |
+
27,7
|
| 4685 |
+
27,7
|
| 4686 |
+
27,5
|
| 4687 |
+
27,26
|
| 4688 |
+
27,27
|
| 4689 |
+
22,27
|
| 4690 |
+
7,0
|
| 4691 |
+
27,27
|
| 4692 |
+
4,10
|
| 4693 |
+
13,13
|
| 4694 |
+
18,18
|
| 4695 |
+
3,0
|
| 4696 |
+
0,0
|
| 4697 |
+
24,24
|
| 4698 |
+
4,27
|
| 4699 |
+
10,2
|
| 4700 |
+
4,5
|
| 4701 |
+
27,27
|
| 4702 |
+
26,26
|
| 4703 |
+
27,27
|
| 4704 |
+
2,2
|
| 4705 |
+
5,27
|
| 4706 |
+
27,27
|
| 4707 |
+
17,17
|
| 4708 |
+
27,27
|
| 4709 |
+
14,14
|
| 4710 |
+
3,3
|
| 4711 |
+
17,0
|
| 4712 |
+
27,27
|
| 4713 |
+
0,9
|
| 4714 |
+
17,27
|
| 4715 |
+
26,27
|
| 4716 |
+
0,0
|
| 4717 |
+
27,7
|
| 4718 |
+
2,2
|
| 4719 |
+
18,1
|
| 4720 |
+
15,13
|
| 4721 |
+
25,7
|
| 4722 |
+
27,27
|
| 4723 |
+
0,27
|
| 4724 |
+
27,0
|
| 4725 |
+
7,7
|
| 4726 |
+
4,20
|
| 4727 |
+
13,0
|
| 4728 |
+
0,0
|
| 4729 |
+
27,27
|
| 4730 |
+
27,27
|
| 4731 |
+
27,27
|
| 4732 |
+
2,2
|
| 4733 |
+
11,4
|
| 4734 |
+
20,20
|
| 4735 |
+
2,2
|
| 4736 |
+
5,27
|
| 4737 |
+
15,15
|
| 4738 |
+
14,14
|
| 4739 |
+
0,0
|
| 4740 |
+
13,13
|
| 4741 |
+
20,20
|
| 4742 |
+
2,3
|
| 4743 |
+
18,18
|
| 4744 |
+
27,27
|
| 4745 |
+
5,5
|
| 4746 |
+
1,1
|
| 4747 |
+
2,2
|
| 4748 |
+
27,15
|
| 4749 |
+
3,3
|
| 4750 |
+
27,0
|
| 4751 |
+
27,27
|
| 4752 |
+
26,3
|
| 4753 |
+
0,0
|
| 4754 |
+
11,3
|
| 4755 |
+
4,27
|
| 4756 |
+
19,24
|
| 4757 |
+
26,26
|
| 4758 |
+
1,1
|
| 4759 |
+
3,18
|
| 4760 |
+
7,7
|
| 4761 |
+
18,2
|
| 4762 |
+
27,27
|
| 4763 |
+
27,4
|
| 4764 |
+
0,0
|
| 4765 |
+
3,27
|
| 4766 |
+
0,0
|
| 4767 |
+
27,27
|
| 4768 |
+
27,0
|
| 4769 |
+
1,1
|
| 4770 |
+
27,0
|
| 4771 |
+
10,27
|
| 4772 |
+
21,0
|
| 4773 |
+
27,10
|
| 4774 |
+
12,12
|
| 4775 |
+
18,18
|
| 4776 |
+
9,27
|
| 4777 |
+
6,6
|
| 4778 |
+
27,27
|
| 4779 |
+
10,27
|
| 4780 |
+
10,6
|
| 4781 |
+
27,10
|
| 4782 |
+
27,27
|
| 4783 |
+
27,7
|
| 4784 |
+
27,27
|
| 4785 |
+
0,0
|
| 4786 |
+
3,27
|
| 4787 |
+
7,7
|
| 4788 |
+
14,14
|
| 4789 |
+
4,27
|
| 4790 |
+
27,27
|
| 4791 |
+
15,15
|
| 4792 |
+
27,27
|
| 4793 |
+
10,10
|
| 4794 |
+
18,18
|
| 4795 |
+
27,27
|
| 4796 |
+
14,14
|
| 4797 |
+
7,7
|
| 4798 |
+
7,7
|
| 4799 |
+
0,0
|
| 4800 |
+
6,6
|
| 4801 |
+
0,0
|
| 4802 |
+
27,27
|
| 4803 |
+
1,1
|
| 4804 |
+
7,7
|
| 4805 |
+
13,27
|
| 4806 |
+
15,15
|
| 4807 |
+
3,27
|
| 4808 |
+
27,27
|
| 4809 |
+
27,27
|
| 4810 |
+
27,27
|
| 4811 |
+
2,2
|
| 4812 |
+
17,17
|
| 4813 |
+
7,7
|
| 4814 |
+
1,1
|
| 4815 |
+
27,27
|
| 4816 |
+
20,20
|
| 4817 |
+
25,10
|
| 4818 |
+
20,20
|
| 4819 |
+
27,1
|
| 4820 |
+
17,13
|
| 4821 |
+
27,27
|
| 4822 |
+
0,5
|
| 4823 |
+
27,27
|
| 4824 |
+
15,0
|
| 4825 |
+
27,5
|
| 4826 |
+
25,24
|
| 4827 |
+
0,5
|
| 4828 |
+
10,27
|
| 4829 |
+
9,25
|
| 4830 |
+
2,10
|
| 4831 |
+
6,27
|
| 4832 |
+
27,1
|
| 4833 |
+
9,3
|
| 4834 |
+
27,27
|
| 4835 |
+
27,3
|
| 4836 |
+
8,8
|
| 4837 |
+
27,17
|
| 4838 |
+
0,0
|
| 4839 |
+
15,15
|
| 4840 |
+
27,0
|
| 4841 |
+
6,27
|
| 4842 |
+
20,27
|
| 4843 |
+
6,7
|
| 4844 |
+
27,27
|
| 4845 |
+
9,9
|
| 4846 |
+
4,0
|
| 4847 |
+
14,14
|
| 4848 |
+
6,6
|
| 4849 |
+
27,27
|
| 4850 |
+
26,25
|
| 4851 |
+
11,11
|
| 4852 |
+
27,27
|
| 4853 |
+
27,27
|
| 4854 |
+
7,3
|
| 4855 |
+
27,2
|
| 4856 |
+
2,27
|
| 4857 |
+
27,27
|
| 4858 |
+
20,17
|
| 4859 |
+
25,2
|
| 4860 |
+
10,10
|
| 4861 |
+
27,27
|
| 4862 |
+
0,0
|
| 4863 |
+
17,17
|
| 4864 |
+
24,24
|
| 4865 |
+
14,14
|
| 4866 |
+
1,1
|
| 4867 |
+
27,27
|
| 4868 |
+
27,27
|
| 4869 |
+
9,9
|
| 4870 |
+
14,14
|
| 4871 |
+
3,27
|
| 4872 |
+
27,27
|
| 4873 |
+
6,0
|
| 4874 |
+
27,27
|
| 4875 |
+
0,0
|
| 4876 |
+
27,27
|
| 4877 |
+
15,15
|
| 4878 |
+
14,14
|
| 4879 |
+
10,10
|
| 4880 |
+
4,27
|
| 4881 |
+
27,7
|
| 4882 |
+
17,17
|
| 4883 |
+
1,1
|
| 4884 |
+
27,27
|
| 4885 |
+
8,2
|
| 4886 |
+
2,2
|
| 4887 |
+
11,2
|
| 4888 |
+
27,4
|
| 4889 |
+
10,27
|
| 4890 |
+
18,18
|
| 4891 |
+
4,26
|
| 4892 |
+
25,25
|
| 4893 |
+
27,13
|
| 4894 |
+
27,27
|
| 4895 |
+
26,3
|
| 4896 |
+
27,27
|
| 4897 |
+
27,7
|
| 4898 |
+
0,0
|
| 4899 |
+
27,27
|
| 4900 |
+
27,27
|
| 4901 |
+
27,27
|
| 4902 |
+
7,7
|
| 4903 |
+
3,0
|
| 4904 |
+
2,2
|
| 4905 |
+
27,27
|
| 4906 |
+
27,27
|
| 4907 |
+
27,27
|
| 4908 |
+
1,1
|
| 4909 |
+
27,27
|
| 4910 |
+
3,3
|
| 4911 |
+
27,27
|
| 4912 |
+
0,18
|
| 4913 |
+
12,3
|
| 4914 |
+
3,7
|
| 4915 |
+
0,14
|
| 4916 |
+
27,27
|
| 4917 |
+
17,17
|
| 4918 |
+
27,27
|
| 4919 |
+
4,27
|
| 4920 |
+
27,3
|
| 4921 |
+
13,13
|
| 4922 |
+
27,27
|
| 4923 |
+
27,27
|
| 4924 |
+
7,27
|
| 4925 |
+
4,27
|
| 4926 |
+
27,27
|
| 4927 |
+
15,15
|
| 4928 |
+
1,1
|
| 4929 |
+
1,1
|
| 4930 |
+
27,26
|
| 4931 |
+
27,4
|
| 4932 |
+
7,7
|
| 4933 |
+
26,27
|
| 4934 |
+
15,15
|
| 4935 |
+
9,27
|
| 4936 |
+
27,27
|
| 4937 |
+
0,0
|
| 4938 |
+
4,27
|
| 4939 |
+
27,27
|
| 4940 |
+
27,27
|
| 4941 |
+
27,27
|
| 4942 |
+
6,7
|
| 4943 |
+
6,6
|
| 4944 |
+
27,4
|
| 4945 |
+
0,27
|
| 4946 |
+
8,20
|
| 4947 |
+
27,22
|
| 4948 |
+
0,0
|
| 4949 |
+
26,7
|
| 4950 |
+
26,26
|
| 4951 |
+
20,20
|
| 4952 |
+
27,27
|
| 4953 |
+
27,27
|
| 4954 |
+
27,27
|
| 4955 |
+
3,2
|
| 4956 |
+
27,10
|
| 4957 |
+
1,17
|
| 4958 |
+
24,24
|
| 4959 |
+
15,15
|
| 4960 |
+
10,27
|
| 4961 |
+
10,11
|
| 4962 |
+
27,22
|
| 4963 |
+
4,4
|
| 4964 |
+
14,13
|
| 4965 |
+
4,27
|
| 4966 |
+
27,27
|
| 4967 |
+
22,27
|
| 4968 |
+
18,18
|
| 4969 |
+
27,27
|
| 4970 |
+
27,27
|
| 4971 |
+
27,27
|
| 4972 |
+
27,27
|
| 4973 |
+
0,0
|
| 4974 |
+
27,18
|
| 4975 |
+
27,27
|
| 4976 |
+
3,27
|
| 4977 |
+
27,0
|
| 4978 |
+
27,27
|
| 4979 |
+
13,4
|
| 4980 |
+
27,27
|
| 4981 |
+
27,27
|
| 4982 |
+
10,27
|
| 4983 |
+
5,27
|
| 4984 |
+
27,27
|
| 4985 |
+
1,1
|
| 4986 |
+
4,0
|
| 4987 |
+
17,17
|
| 4988 |
+
15,15
|
| 4989 |
+
0,0
|
| 4990 |
+
27,27
|
| 4991 |
+
3,3
|
| 4992 |
+
0,0
|
| 4993 |
+
7,7
|
| 4994 |
+
6,26
|
| 4995 |
+
27,27
|
| 4996 |
+
15,15
|
| 4997 |
+
15,5
|
| 4998 |
+
0,17
|
| 4999 |
+
7,7
|
| 5000 |
+
27,27
|
| 5001 |
+
3,27
|
| 5002 |
+
1,1
|
| 5003 |
+
27,10
|
| 5004 |
+
20,27
|
| 5005 |
+
15,15
|
| 5006 |
+
27,27
|
| 5007 |
+
4,4
|
| 5008 |
+
0,27
|
| 5009 |
+
20,8
|
| 5010 |
+
4,27
|
| 5011 |
+
27,27
|
| 5012 |
+
3,14
|
| 5013 |
+
2,15
|
| 5014 |
+
27,27
|
| 5015 |
+
27,27
|
| 5016 |
+
15,15
|
| 5017 |
+
20,20
|
| 5018 |
+
11,27
|
| 5019 |
+
4,4
|
| 5020 |
+
8,7
|
| 5021 |
+
2,2
|
| 5022 |
+
27,27
|
| 5023 |
+
3,7
|
| 5024 |
+
6,6
|
| 5025 |
+
27,7
|
| 5026 |
+
2,2
|
| 5027 |
+
27,24
|
| 5028 |
+
1,1
|
| 5029 |
+
1,1
|
| 5030 |
+
4,4
|
| 5031 |
+
27,27
|
| 5032 |
+
5,5
|
| 5033 |
+
3,2
|
| 5034 |
+
27,27
|
| 5035 |
+
27,27
|
| 5036 |
+
13,8
|
| 5037 |
+
4,27
|
| 5038 |
+
27,27
|
| 5039 |
+
15,15
|
| 5040 |
+
27,27
|
| 5041 |
+
27,27
|
| 5042 |
+
4,4
|
| 5043 |
+
4,27
|
| 5044 |
+
22,1
|
| 5045 |
+
20,27
|
| 5046 |
+
8,8
|
| 5047 |
+
7,7
|
| 5048 |
+
22,27
|
| 5049 |
+
0,0
|
| 5050 |
+
0,27
|
| 5051 |
+
1,1
|
| 5052 |
+
4,4
|
| 5053 |
+
3,12
|
| 5054 |
+
27,10
|
| 5055 |
+
9,25
|
| 5056 |
+
18,7
|
| 5057 |
+
1,1
|
| 5058 |
+
26,2
|
| 5059 |
+
0,0
|
| 5060 |
+
0,18
|
| 5061 |
+
25,27
|
| 5062 |
+
11,7
|
| 5063 |
+
4,27
|
| 5064 |
+
25,25
|
| 5065 |
+
8,8
|
| 5066 |
+
3,2
|
| 5067 |
+
3,2
|
| 5068 |
+
27,10
|
| 5069 |
+
15,15
|
| 5070 |
+
27,10
|
| 5071 |
+
6,6
|
| 5072 |
+
14,14
|
| 5073 |
+
27,27
|
| 5074 |
+
18,18
|
| 5075 |
+
9,25
|
| 5076 |
+
0,18
|
| 5077 |
+
14,14
|
| 5078 |
+
27,5
|
| 5079 |
+
15,15
|
| 5080 |
+
27,0
|
| 5081 |
+
0,0
|
| 5082 |
+
4,27
|
| 5083 |
+
22,9
|
| 5084 |
+
25,25
|
| 5085 |
+
27,27
|
| 5086 |
+
27,27
|
| 5087 |
+
26,27
|
| 5088 |
+
13,13
|
| 5089 |
+
12,27
|
| 5090 |
+
12,27
|
| 5091 |
+
27,27
|
| 5092 |
+
0,0
|
| 5093 |
+
18,18
|
| 5094 |
+
7,27
|
| 5095 |
+
12,24
|
| 5096 |
+
5,5
|
| 5097 |
+
3,2
|
| 5098 |
+
18,18
|
| 5099 |
+
25,25
|
| 5100 |
+
9,27
|
| 5101 |
+
15,15
|
| 5102 |
+
4,27
|
| 5103 |
+
0,0
|
| 5104 |
+
4,20
|
| 5105 |
+
15,15
|
| 5106 |
+
18,18
|
| 5107 |
+
27,7
|
| 5108 |
+
10,27
|
| 5109 |
+
27,26
|
| 5110 |
+
3,25
|
| 5111 |
+
17,17
|
| 5112 |
+
0,0
|
| 5113 |
+
0,17
|
| 5114 |
+
9,27
|
| 5115 |
+
4,10
|
| 5116 |
+
27,27
|
| 5117 |
+
27,27
|
| 5118 |
+
1,1
|
| 5119 |
+
13,13
|
| 5120 |
+
27,7
|
| 5121 |
+
27,5
|
| 5122 |
+
0,17
|
| 5123 |
+
3,27
|
| 5124 |
+
3,9
|
| 5125 |
+
3,27
|
| 5126 |
+
8,20
|
| 5127 |
+
11,11
|
| 5128 |
+
27,27
|
| 5129 |
+
9,27
|
| 5130 |
+
0,0
|
| 5131 |
+
5,5
|
| 5132 |
+
6,7
|
| 5133 |
+
27,27
|
| 5134 |
+
27,27
|
| 5135 |
+
5,20
|
| 5136 |
+
3,2
|
| 5137 |
+
27,27
|
| 5138 |
+
4,27
|
| 5139 |
+
27,27
|
| 5140 |
+
10,27
|
| 5141 |
+
3,3
|
| 5142 |
+
20,0
|
| 5143 |
+
6,27
|
| 5144 |
+
27,27
|
| 5145 |
+
0,0
|
| 5146 |
+
7,7
|
| 5147 |
+
27,27
|
| 5148 |
+
18,1
|
| 5149 |
+
6,27
|
| 5150 |
+
13,15
|
| 5151 |
+
27,27
|
| 5152 |
+
0,0
|
| 5153 |
+
27,7
|
| 5154 |
+
18,18
|
| 5155 |
+
20,27
|
| 5156 |
+
1,0
|
| 5157 |
+
25,25
|
| 5158 |
+
27,4
|
| 5159 |
+
27,0
|
| 5160 |
+
27,27
|
| 5161 |
+
25,25
|
| 5162 |
+
25,25
|
| 5163 |
+
0,0
|
| 5164 |
+
3,2
|
| 5165 |
+
6,7
|
| 5166 |
+
3,27
|
| 5167 |
+
0,0
|
| 5168 |
+
0,0
|
| 5169 |
+
5,17
|
| 5170 |
+
2,2
|
| 5171 |
+
27,27
|
| 5172 |
+
15,15
|
| 5173 |
+
5,5
|
| 5174 |
+
4,27
|
| 5175 |
+
27,27
|
| 5176 |
+
2,26
|
| 5177 |
+
25,6
|
| 5178 |
+
3,3
|
| 5179 |
+
27,27
|
| 5180 |
+
0,0
|
| 5181 |
+
13,13
|
| 5182 |
+
27,10
|
| 5183 |
+
27,27
|
| 5184 |
+
27,27
|
| 5185 |
+
24,14
|
| 5186 |
+
27,13
|
| 5187 |
+
27,27
|
| 5188 |
+
27,27
|
| 5189 |
+
0,0
|
| 5190 |
+
1,1
|
| 5191 |
+
15,15
|
| 5192 |
+
4,4
|
| 5193 |
+
7,7
|
| 5194 |
+
2,2
|
| 5195 |
+
27,20
|
| 5196 |
+
18,0
|
| 5197 |
+
13,13
|
| 5198 |
+
6,27
|
| 5199 |
+
27,4
|
| 5200 |
+
27,27
|
| 5201 |
+
0,0
|
| 5202 |
+
6,10
|
| 5203 |
+
27,27
|
| 5204 |
+
7,7
|
| 5205 |
+
13,0
|
| 5206 |
+
4,4
|
| 5207 |
+
4,4
|
| 5208 |
+
1,1
|
| 5209 |
+
11,11
|
| 5210 |
+
27,27
|
| 5211 |
+
9,25
|
| 5212 |
+
27,27
|
| 5213 |
+
0,0
|
| 5214 |
+
15,15
|
| 5215 |
+
7,7
|
| 5216 |
+
0,27
|
| 5217 |
+
0,27
|
| 5218 |
+
25,25
|
| 5219 |
+
1,1
|
| 5220 |
+
27,1
|
| 5221 |
+
0,0
|
| 5222 |
+
27,27
|
| 5223 |
+
21,17
|
| 5224 |
+
5,5
|
| 5225 |
+
27,27
|
| 5226 |
+
6,7
|
| 5227 |
+
27,4
|
| 5228 |
+
4,9
|
| 5229 |
+
27,27
|
| 5230 |
+
27,27
|
| 5231 |
+
0,0
|
| 5232 |
+
27,27
|
| 5233 |
+
27,27
|
| 5234 |
+
27,27
|
| 5235 |
+
9,9
|
| 5236 |
+
27,27
|
| 5237 |
+
10,27
|
| 5238 |
+
8,20
|
| 5239 |
+
7,7
|
| 5240 |
+
7,7
|
| 5241 |
+
26,26
|
| 5242 |
+
10,10
|
| 5243 |
+
10,27
|
| 5244 |
+
15,15
|
| 5245 |
+
4,10
|
| 5246 |
+
26,26
|
| 5247 |
+
2,0
|
| 5248 |
+
1,1
|
| 5249 |
+
0,0
|
| 5250 |
+
27,27
|
| 5251 |
+
27,27
|
| 5252 |
+
1,1
|
| 5253 |
+
6,6
|
| 5254 |
+
0,0
|
| 5255 |
+
4,27
|
| 5256 |
+
25,25
|
| 5257 |
+
2,2
|
| 5258 |
+
0,18
|
| 5259 |
+
4,27
|
| 5260 |
+
27,27
|
| 5261 |
+
27,27
|
| 5262 |
+
0,0
|
| 5263 |
+
27,0
|
| 5264 |
+
4,27
|
| 5265 |
+
0,0
|
| 5266 |
+
20,27
|
| 5267 |
+
27,27
|
| 5268 |
+
4,4
|
| 5269 |
+
6,6
|
| 5270 |
+
0,0
|
| 5271 |
+
1,1
|
| 5272 |
+
27,27
|
| 5273 |
+
27,27
|
| 5274 |
+
27,4
|
| 5275 |
+
6,6
|
| 5276 |
+
20,20
|
| 5277 |
+
0,0
|
| 5278 |
+
7,7
|
| 5279 |
+
7,6
|
| 5280 |
+
0,15
|
| 5281 |
+
27,7
|
| 5282 |
+
9,25
|
| 5283 |
+
3,4
|
| 5284 |
+
27,27
|
| 5285 |
+
27,15
|
| 5286 |
+
27,27
|
| 5287 |
+
7,7
|
| 5288 |
+
3,15
|
| 5289 |
+
17,20
|
| 5290 |
+
27,27
|
| 5291 |
+
4,4
|
| 5292 |
+
26,26
|
| 5293 |
+
27,27
|
| 5294 |
+
0,0
|
| 5295 |
+
6,27
|
| 5296 |
+
27,3
|
| 5297 |
+
2,27
|
| 5298 |
+
27,27
|
| 5299 |
+
27,27
|
| 5300 |
+
0,1
|
| 5301 |
+
27,27
|
| 5302 |
+
3,27
|
| 5303 |
+
25,25
|
| 5304 |
+
10,2
|
| 5305 |
+
13,13
|
| 5306 |
+
0,0
|
| 5307 |
+
27,27
|
| 5308 |
+
18,18
|
| 5309 |
+
27,27
|
| 5310 |
+
27,27
|
| 5311 |
+
3,2
|
| 5312 |
+
27,5
|
| 5313 |
+
15,15
|
| 5314 |
+
7,7
|
| 5315 |
+
27,27
|
| 5316 |
+
3,27
|
| 5317 |
+
22,27
|
| 5318 |
+
3,27
|
| 5319 |
+
20,20
|
| 5320 |
+
10,27
|
| 5321 |
+
7,15
|
| 5322 |
+
9,25
|
| 5323 |
+
4,4
|
| 5324 |
+
27,27
|
| 5325 |
+
1,1
|
| 5326 |
+
27,27
|
| 5327 |
+
3,2
|
| 5328 |
+
27,27
|
| 5329 |
+
4,17
|
| 5330 |
+
0,0
|
| 5331 |
+
27,27
|
| 5332 |
+
4,27
|
| 5333 |
+
2,3
|
| 5334 |
+
0,0
|
| 5335 |
+
1,1
|
| 5336 |
+
0,4
|
| 5337 |
+
10,10
|
| 5338 |
+
25,25
|
| 5339 |
+
27,27
|
| 5340 |
+
27,27
|
| 5341 |
+
25,25
|
| 5342 |
+
11,2
|
| 5343 |
+
3,27
|
| 5344 |
+
25,25
|
| 5345 |
+
0,27
|
| 5346 |
+
22,27
|
| 5347 |
+
5,27
|
| 5348 |
+
8,27
|
| 5349 |
+
0,0
|
| 5350 |
+
27,27
|
| 5351 |
+
5,3
|
| 5352 |
+
0,0
|
| 5353 |
+
25,7
|
| 5354 |
+
27,7
|
| 5355 |
+
27,27
|
| 5356 |
+
27,2
|
| 5357 |
+
27,27
|
| 5358 |
+
8,8
|
| 5359 |
+
2,3
|
| 5360 |
+
27,7
|
| 5361 |
+
17,17
|
| 5362 |
+
27,13
|
| 5363 |
+
27,27
|
| 5364 |
+
9,20
|
| 5365 |
+
4,4
|
| 5366 |
+
15,15
|
| 5367 |
+
15,15
|
| 5368 |
+
9,3
|
| 5369 |
+
27,27
|
| 5370 |
+
13,7
|
| 5371 |
+
3,1
|
| 5372 |
+
10,10
|
| 5373 |
+
20,20
|
| 5374 |
+
5,0
|
| 5375 |
+
1,27
|
| 5376 |
+
27,27
|
| 5377 |
+
6,7
|
| 5378 |
+
27,27
|
| 5379 |
+
7,7
|
| 5380 |
+
4,4
|
| 5381 |
+
22,22
|
| 5382 |
+
10,10
|
| 5383 |
+
2,2
|
| 5384 |
+
8,27
|
| 5385 |
+
2,2
|
| 5386 |
+
0,0
|
| 5387 |
+
27,27
|
| 5388 |
+
7,27
|
| 5389 |
+
3,3
|
| 5390 |
+
27,27
|
| 5391 |
+
13,14
|
| 5392 |
+
0,0
|
| 5393 |
+
9,27
|
| 5394 |
+
8,5
|
| 5395 |
+
27,27
|
| 5396 |
+
6,3
|
| 5397 |
+
27,10
|
| 5398 |
+
1,1
|
| 5399 |
+
4,27
|
| 5400 |
+
18,18
|
| 5401 |
+
26,0
|
| 5402 |
+
22,27
|
| 5403 |
+
9,9
|
| 5404 |
+
27,27
|
| 5405 |
+
0,0
|
| 5406 |
+
1,1
|
| 5407 |
+
0,15
|
| 5408 |
+
27,27
|
| 5409 |
+
8,27
|
| 5410 |
+
15,15
|
| 5411 |
+
3,14
|
| 5412 |
+
9,9
|
| 5413 |
+
27,6
|
| 5414 |
+
3,0
|
| 5415 |
+
10,10
|
| 5416 |
+
7,25
|
| 5417 |
+
4,27
|
| 5418 |
+
18,18
|
| 5419 |
+
15,15
|
| 5420 |
+
27,27
|
| 5421 |
+
1,1
|
| 5422 |
+
27,14
|
| 5423 |
+
27,27
|
| 5424 |
+
15,15
|
| 5425 |
+
4,4
|
| 5426 |
+
27,27
|
| 5427 |
+
0,0
|
| 5428 |
+
27,27
|
ui.png
ADDED
|
Git LFS Details
|