Spaces:
Runtime error
Runtime error
File size: 11,666 Bytes
55aa9a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
from typing import List
import math
import os
import numpy as np
import torch
import einops
import pytorch_lightning as pl
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf
from openxlab.model import download
from tqdm import tqdm
from model.spaced_sampler import SpacedSampler
from model.cldm import ControlLDM
from utils.image import auto_resize, pad
from utils.common import instantiate_from_config, load_state_dict
from utils.face_restoration_helper import FaceRestoreHelper
# download models to local directory
download(model_repo="linxinqi/DiffBIR", model_name="diffbir_general_full_v1")
download(model_repo="linxinqi/DiffBIR", model_name="diffbir_general_swinir_v1")
download(model_repo="linxinqi/DiffBIR", model_name="diffbir_face_full_v1")
config = "cldm.yaml"
general_full_ckpt = "general_full_v1.ckpt"
general_swinir_ckpt = "general_swinir_v1.ckpt"
face_full_ckpt = "face_full_v1.ckpt"
# create general model
general_model: ControlLDM = instantiate_from_config(OmegaConf.load(config)).cuda()
load_state_dict(general_model, torch.load(general_full_ckpt, map_location="cuda"), strict=True)
load_state_dict(general_model.preprocess_model, torch.load(general_swinir_ckpt, map_location="cuda"), strict=True)
general_model.freeze()
# keep a reference of general model's preprocess model and parallel model
general_preprocess_model = general_model.preprocess_model
general_control_model = general_model.control_model
# create face model
face_model: ControlLDM = instantiate_from_config(OmegaConf.load(config))
load_state_dict(face_model, torch.load(face_full_ckpt, map_location="cpu"), strict=True)
face_model.freeze()
# share the pretrained weights with general model
_tmp = face_model.first_stage_model
face_model.first_stage_model = general_model.first_stage_model
del _tmp
_tmp = face_model.cond_stage_model
face_model.cond_stage_model = general_model.cond_stage_model
del _tmp
_tmp = face_model.model
face_model.model = general_model.model
del _tmp
face_model.cuda()
def to_tensor(image, device, bgr2rgb=False):
if bgr2rgb:
image = image[:, :, ::-1]
image_tensor = torch.tensor(image[None] / 255.0, dtype=torch.float32, device=device).clamp_(0, 1)
image_tensor = einops.rearrange(image_tensor, "n h w c -> n c h w").contiguous()
return image_tensor
def to_array(image):
image = image.clamp(0, 1)
image_array = (einops.rearrange(image, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
return image_array
@torch.no_grad()
def process(
control_img: Image.Image,
use_face_model: bool,
num_samples: int,
sr_scale: int,
disable_preprocess_model: bool,
strength: float,
positive_prompt: str,
negative_prompt: str,
cfg_scale: float,
steps: int,
use_color_fix: bool,
seed: int,
tiled: bool,
tile_size: int,
tile_stride: int
# progress = gr.Progress(track_tqdm=True)
) -> List[np.ndarray]:
pl.seed_everything(seed)
global general_model
global face_model
model = general_model
sampler = SpacedSampler(model, var_type="fixed_small")
model.control_scales = [strength] * 13
if use_face_model:
print("use face model")
sampler_face = SpacedSampler(face_model, var_type="fixed_small")
face_model.control_scales = [strength] * 13
# prepare condition
if sr_scale != 1:
control_img = control_img.resize(
tuple(math.ceil(x * sr_scale) for x in control_img.size),
Image.BICUBIC
)
input_size = control_img.size
if not tiled:
control_img = auto_resize(control_img, 512)
else:
control_img = auto_resize(control_img, tile_size)
h, w = control_img.height, control_img.width
control_img = pad(np.array(control_img), scale=64) # HWC, RGB, [0, 255]
if use_face_model:
# set up FaceRestoreHelper
face_size = 512
face_helper = FaceRestoreHelper(device=model.device, upscale_factor=1, face_size=face_size, use_parse=True)
# read BGR numpy [0, 255]
face_helper.read_image(np.array(control_img)[:, :, ::-1])
# detect faces in input lq control image
face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
face_helper.align_warp_face()
control = to_tensor(control_img, device=model.device)
if not disable_preprocess_model:
control = model.preprocess_model(control)
height, width = control.size(-2), control.size(-1)
preds = []
for _ in tqdm(range(num_samples)):
shape = (1, 4, height // 8, width // 8)
x_T = torch.randn(shape, device=model.device, dtype=torch.float32)
if not tiled:
samples = sampler.sample(
steps=steps, shape=shape, cond_img=control,
positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T,
cfg_scale=cfg_scale, cond_fn=None,
color_fix_type="wavelet" if use_color_fix else "none"
)
else:
samples = sampler.sample_with_mixdiff(
tile_size=int(tile_size), tile_stride=int(tile_stride),
steps=steps, shape=shape, cond_img=control,
positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T,
cfg_scale=cfg_scale, cond_fn=None,
color_fix_type="wavelet" if use_color_fix else "none"
)
restored_bg = to_array(samples)
if use_face_model and len(face_helper.cropped_faces) > 0:
shape_face = (1, 4, face_size // 8, face_size // 8)
x_T_face = torch.randn(shape_face, device=model.device, dtype=torch.float32)
# face detected
for cropped_face in face_helper.cropped_faces:
cropped_face = to_tensor(cropped_face, device=model.device, bgr2rgb=True)
if not disable_preprocess_model:
cropped_face = face_model.preprocess_model(cropped_face)
samples_face = sampler_face.sample(
steps=steps, shape=shape, cond_img=cropped_face,
positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T_face,
cfg_scale=1.0, cond_fn=None,
color_fix_type="wavelet" if use_color_fix else "none"
)
restored_face = to_array(samples_face)
face_helper.add_restored_face(restored_face[0])
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
restored_img = face_helper.paste_faces_to_input_image(
upsample_img=restored_bg[0]
)
# remove padding and resize to input size
restored_img = Image.fromarray(restored_img[:h, :w, :]).resize(input_size, Image.LANCZOS)
preds.append(np.array(restored_img))
return preds
MAX_SIZE = int(os.getenv("MAX_SIZE"))
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT"))
print(f"max size = {MAX_SIZE}, concurrency_count = {CONCURRENCY_COUNT}")
MARKDOWN = \
"""
## DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
[GitHub](https://github.com/XPixelGroup/DiffBIR) | [Paper](https://arxiv.org/abs/2308.15070) | [Project Page](https://0x3f3f3f3fun.github.io/projects/diffbir/)
If DiffBIR is helpful for you, please help star the GitHub Repo. Thanks!
## NOTE
1. This app processes user-uploaded images in sequence, so it may take some time before your image begins to be processed.
2. This is a publicly-used app, so please don't upload large images (>= 1024) to avoid taking up too much time.
"""
block = gr.Blocks().queue(concurrency_count=CONCURRENCY_COUNT, max_size=MAX_SIZE)
with block:
with gr.Row():
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image = gr.Image(source="upload", type="pil")
run_button = gr.Button(label="Run")
with gr.Accordion("Options", open=True):
use_face_model = gr.Checkbox(label="Use Face Model", value=False)
tiled = gr.Checkbox(label="Tiled", value=False)
tile_size = gr.Slider(label="Tile Size", minimum=512, maximum=1024, value=512, step=256)
tile_stride = gr.Slider(label="Tile Stride", minimum=256, maximum=512, value=256, step=128)
num_samples = gr.Slider(label="Number Of Samples", minimum=1, maximum=12, value=1, step=1)
sr_scale = gr.Number(label="SR Scale", value=1)
positive_prompt = gr.Textbox(label="Positive Prompt", value="")
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
)
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to a value larger than 1 to enable it!)", minimum=0.1, maximum=30.0, value=1.0, step=0.1)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
disable_preprocess_model = gr.Checkbox(label="Disable Preprocess Model", value=False)
use_color_fix = gr.Checkbox(label="Use Color Correction", value=True)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
with gr.Column():
result_gallery = gr.Gallery(label="Output", show_label=False, elem_id="gallery").style(height="auto", grid=2)
# gr.Markdown("## Image Examples")
gr.Examples(
examples=[
["examples/face/0229.png", True, 1, 1, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256],
["examples/face/hermione.jpg", True, 1, 2, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256],
["examples/general/14.jpg", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256],
["examples/general/49.jpg", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256],
["examples/general/53.jpeg", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256],
# ["examples/general/bx2vqrcj.png", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, True, 512, 256],
],
inputs=[
input_image,
use_face_model,
num_samples,
sr_scale,
disable_preprocess_model,
strength,
positive_prompt,
negative_prompt,
cfg_scale,
steps,
use_color_fix,
seed,
tiled,
tile_size,
tile_stride
],
outputs=[result_gallery],
fn=process,
cache_examples=True,
)
inputs = [
input_image,
use_face_model,
num_samples,
sr_scale,
disable_preprocess_model,
strength,
positive_prompt,
negative_prompt,
cfg_scale,
steps,
use_color_fix,
seed,
tiled,
tile_size,
tile_stride
]
run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])
block.launch()
|