Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import einops
|
8 |
+
import pytorch_lightning as pl
|
9 |
+
import gradio as gr
|
10 |
+
from PIL import Image
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
from openxlab.model import download
|
13 |
+
from tqdm import tqdm
|
14 |
+
|
15 |
+
from model.spaced_sampler import SpacedSampler
|
16 |
+
from model.cldm import ControlLDM
|
17 |
+
from utils.image import auto_resize, pad
|
18 |
+
from utils.common import instantiate_from_config, load_state_dict
|
19 |
+
from utils.face_restoration_helper import FaceRestoreHelper
|
20 |
+
|
21 |
+
|
22 |
+
# download models to local directory
|
23 |
+
download(model_repo="linxinqi/DiffBIR", model_name="diffbir_general_full_v1")
|
24 |
+
download(model_repo="linxinqi/DiffBIR", model_name="diffbir_general_swinir_v1")
|
25 |
+
download(model_repo="linxinqi/DiffBIR", model_name="diffbir_face_full_v1")
|
26 |
+
|
27 |
+
config = "cldm.yaml"
|
28 |
+
general_full_ckpt = "general_full_v1.ckpt"
|
29 |
+
general_swinir_ckpt = "general_swinir_v1.ckpt"
|
30 |
+
face_full_ckpt = "face_full_v1.ckpt"
|
31 |
+
|
32 |
+
# create general model
|
33 |
+
general_model: ControlLDM = instantiate_from_config(OmegaConf.load(config)).cuda()
|
34 |
+
load_state_dict(general_model, torch.load(general_full_ckpt, map_location="cuda"), strict=True)
|
35 |
+
load_state_dict(general_model.preprocess_model, torch.load(general_swinir_ckpt, map_location="cuda"), strict=True)
|
36 |
+
general_model.freeze()
|
37 |
+
|
38 |
+
# keep a reference of general model's preprocess model and parallel model
|
39 |
+
general_preprocess_model = general_model.preprocess_model
|
40 |
+
general_control_model = general_model.control_model
|
41 |
+
|
42 |
+
# create face model
|
43 |
+
face_model: ControlLDM = instantiate_from_config(OmegaConf.load(config))
|
44 |
+
load_state_dict(face_model, torch.load(face_full_ckpt, map_location="cpu"), strict=True)
|
45 |
+
face_model.freeze()
|
46 |
+
|
47 |
+
# share the pretrained weights with general model
|
48 |
+
_tmp = face_model.first_stage_model
|
49 |
+
face_model.first_stage_model = general_model.first_stage_model
|
50 |
+
del _tmp
|
51 |
+
|
52 |
+
_tmp = face_model.cond_stage_model
|
53 |
+
face_model.cond_stage_model = general_model.cond_stage_model
|
54 |
+
del _tmp
|
55 |
+
|
56 |
+
_tmp = face_model.model
|
57 |
+
face_model.model = general_model.model
|
58 |
+
del _tmp
|
59 |
+
|
60 |
+
face_model.cuda()
|
61 |
+
|
62 |
+
def to_tensor(image, device, bgr2rgb=False):
|
63 |
+
if bgr2rgb:
|
64 |
+
image = image[:, :, ::-1]
|
65 |
+
image_tensor = torch.tensor(image[None] / 255.0, dtype=torch.float32, device=device).clamp_(0, 1)
|
66 |
+
image_tensor = einops.rearrange(image_tensor, "n h w c -> n c h w").contiguous()
|
67 |
+
return image_tensor
|
68 |
+
|
69 |
+
def to_array(image):
|
70 |
+
image = image.clamp(0, 1)
|
71 |
+
image_array = (einops.rearrange(image, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
|
72 |
+
return image_array
|
73 |
+
|
74 |
+
@torch.no_grad()
|
75 |
+
def process(
|
76 |
+
control_img: Image.Image,
|
77 |
+
use_face_model: bool,
|
78 |
+
num_samples: int,
|
79 |
+
sr_scale: int,
|
80 |
+
disable_preprocess_model: bool,
|
81 |
+
strength: float,
|
82 |
+
positive_prompt: str,
|
83 |
+
negative_prompt: str,
|
84 |
+
cfg_scale: float,
|
85 |
+
steps: int,
|
86 |
+
use_color_fix: bool,
|
87 |
+
seed: int,
|
88 |
+
tiled: bool,
|
89 |
+
tile_size: int,
|
90 |
+
tile_stride: int
|
91 |
+
# progress = gr.Progress(track_tqdm=True)
|
92 |
+
) -> List[np.ndarray]:
|
93 |
+
pl.seed_everything(seed)
|
94 |
+
|
95 |
+
global general_model
|
96 |
+
global face_model
|
97 |
+
|
98 |
+
model = general_model
|
99 |
+
sampler = SpacedSampler(model, var_type="fixed_small")
|
100 |
+
model.control_scales = [strength] * 13
|
101 |
+
if use_face_model:
|
102 |
+
print("use face model")
|
103 |
+
sampler_face = SpacedSampler(face_model, var_type="fixed_small")
|
104 |
+
face_model.control_scales = [strength] * 13
|
105 |
+
|
106 |
+
# prepare condition
|
107 |
+
if sr_scale != 1:
|
108 |
+
control_img = control_img.resize(
|
109 |
+
tuple(math.ceil(x * sr_scale) for x in control_img.size),
|
110 |
+
Image.BICUBIC
|
111 |
+
)
|
112 |
+
input_size = control_img.size
|
113 |
+
if not tiled:
|
114 |
+
control_img = auto_resize(control_img, 512)
|
115 |
+
else:
|
116 |
+
control_img = auto_resize(control_img, tile_size)
|
117 |
+
h, w = control_img.height, control_img.width
|
118 |
+
control_img = pad(np.array(control_img), scale=64) # HWC, RGB, [0, 255]
|
119 |
+
|
120 |
+
if use_face_model:
|
121 |
+
# set up FaceRestoreHelper
|
122 |
+
face_size = 512
|
123 |
+
face_helper = FaceRestoreHelper(device=model.device, upscale_factor=1, face_size=face_size, use_parse=True)
|
124 |
+
# read BGR numpy [0, 255]
|
125 |
+
face_helper.read_image(np.array(control_img)[:, :, ::-1])
|
126 |
+
# detect faces in input lq control image
|
127 |
+
face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
|
128 |
+
face_helper.align_warp_face()
|
129 |
+
|
130 |
+
control = to_tensor(control_img, device=model.device)
|
131 |
+
if not disable_preprocess_model:
|
132 |
+
control = model.preprocess_model(control)
|
133 |
+
height, width = control.size(-2), control.size(-1)
|
134 |
+
|
135 |
+
preds = []
|
136 |
+
for _ in tqdm(range(num_samples)):
|
137 |
+
shape = (1, 4, height // 8, width // 8)
|
138 |
+
x_T = torch.randn(shape, device=model.device, dtype=torch.float32)
|
139 |
+
if not tiled:
|
140 |
+
samples = sampler.sample(
|
141 |
+
steps=steps, shape=shape, cond_img=control,
|
142 |
+
positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T,
|
143 |
+
cfg_scale=cfg_scale, cond_fn=None,
|
144 |
+
color_fix_type="wavelet" if use_color_fix else "none"
|
145 |
+
)
|
146 |
+
else:
|
147 |
+
samples = sampler.sample_with_mixdiff(
|
148 |
+
tile_size=int(tile_size), tile_stride=int(tile_stride),
|
149 |
+
steps=steps, shape=shape, cond_img=control,
|
150 |
+
positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T,
|
151 |
+
cfg_scale=cfg_scale, cond_fn=None,
|
152 |
+
color_fix_type="wavelet" if use_color_fix else "none"
|
153 |
+
)
|
154 |
+
restored_bg = to_array(samples)
|
155 |
+
|
156 |
+
if use_face_model and len(face_helper.cropped_faces) > 0:
|
157 |
+
shape_face = (1, 4, face_size // 8, face_size // 8)
|
158 |
+
x_T_face = torch.randn(shape_face, device=model.device, dtype=torch.float32)
|
159 |
+
# face detected
|
160 |
+
for cropped_face in face_helper.cropped_faces:
|
161 |
+
cropped_face = to_tensor(cropped_face, device=model.device, bgr2rgb=True)
|
162 |
+
if not disable_preprocess_model:
|
163 |
+
cropped_face = face_model.preprocess_model(cropped_face)
|
164 |
+
samples_face = sampler_face.sample(
|
165 |
+
steps=steps, shape=shape, cond_img=cropped_face,
|
166 |
+
positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T_face,
|
167 |
+
cfg_scale=1.0, cond_fn=None,
|
168 |
+
color_fix_type="wavelet" if use_color_fix else "none"
|
169 |
+
)
|
170 |
+
restored_face = to_array(samples_face)
|
171 |
+
face_helper.add_restored_face(restored_face[0])
|
172 |
+
face_helper.get_inverse_affine(None)
|
173 |
+
# paste each restored face to the input image
|
174 |
+
restored_img = face_helper.paste_faces_to_input_image(
|
175 |
+
upsample_img=restored_bg[0]
|
176 |
+
)
|
177 |
+
|
178 |
+
# remove padding and resize to input size
|
179 |
+
restored_img = Image.fromarray(restored_img[:h, :w, :]).resize(input_size, Image.LANCZOS)
|
180 |
+
preds.append(np.array(restored_img))
|
181 |
+
return preds
|
182 |
+
|
183 |
+
MAX_SIZE = int(os.getenv("MAX_SIZE"))
|
184 |
+
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT"))
|
185 |
+
|
186 |
+
print(f"max size = {MAX_SIZE}, concurrency_count = {CONCURRENCY_COUNT}")
|
187 |
+
|
188 |
+
MARKDOWN = \
|
189 |
+
"""
|
190 |
+
## DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
|
191 |
+
|
192 |
+
[GitHub](https://github.com/XPixelGroup/DiffBIR) | [Paper](https://arxiv.org/abs/2308.15070) | [Project Page](https://0x3f3f3f3fun.github.io/projects/diffbir/)
|
193 |
+
|
194 |
+
If DiffBIR is helpful for you, please help star the GitHub Repo. Thanks!
|
195 |
+
|
196 |
+
## NOTE
|
197 |
+
|
198 |
+
1. This app processes user-uploaded images in sequence, so it may take some time before your image begins to be processed.
|
199 |
+
2. This is a publicly-used app, so please don't upload large images (>= 1024) to avoid taking up too much time.
|
200 |
+
"""
|
201 |
+
|
202 |
+
block = gr.Blocks().queue(concurrency_count=CONCURRENCY_COUNT, max_size=MAX_SIZE)
|
203 |
+
with block:
|
204 |
+
with gr.Row():
|
205 |
+
gr.Markdown(MARKDOWN)
|
206 |
+
with gr.Row():
|
207 |
+
with gr.Column():
|
208 |
+
input_image = gr.Image(source="upload", type="pil")
|
209 |
+
run_button = gr.Button(label="Run")
|
210 |
+
with gr.Accordion("Options", open=True):
|
211 |
+
use_face_model = gr.Checkbox(label="Use Face Model", value=False)
|
212 |
+
tiled = gr.Checkbox(label="Tiled", value=False)
|
213 |
+
tile_size = gr.Slider(label="Tile Size", minimum=512, maximum=1024, value=512, step=256)
|
214 |
+
tile_stride = gr.Slider(label="Tile Stride", minimum=256, maximum=512, value=256, step=128)
|
215 |
+
num_samples = gr.Slider(label="Number Of Samples", minimum=1, maximum=12, value=1, step=1)
|
216 |
+
sr_scale = gr.Number(label="SR Scale", value=1)
|
217 |
+
positive_prompt = gr.Textbox(label="Positive Prompt", value="")
|
218 |
+
negative_prompt = gr.Textbox(
|
219 |
+
label="Negative Prompt",
|
220 |
+
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
|
221 |
+
)
|
222 |
+
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to a value larger than 1 to enable it!)", minimum=0.1, maximum=30.0, value=1.0, step=0.1)
|
223 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
224 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
|
225 |
+
disable_preprocess_model = gr.Checkbox(label="Disable Preprocess Model", value=False)
|
226 |
+
use_color_fix = gr.Checkbox(label="Use Color Correction", value=True)
|
227 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
|
228 |
+
with gr.Column():
|
229 |
+
result_gallery = gr.Gallery(label="Output", show_label=False, elem_id="gallery").style(height="auto", grid=2)
|
230 |
+
# gr.Markdown("## Image Examples")
|
231 |
+
gr.Examples(
|
232 |
+
examples=[
|
233 |
+
["examples/face/0229.png", True, 1, 1, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256],
|
234 |
+
["examples/face/hermione.jpg", True, 1, 2, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256],
|
235 |
+
["examples/general/14.jpg", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256],
|
236 |
+
["examples/general/49.jpg", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256],
|
237 |
+
["examples/general/53.jpeg", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, False, 512, 256],
|
238 |
+
# ["examples/general/bx2vqrcj.png", False, 1, 4, False, 1.0, "", "", 1.0, 50, True, 231, True, 512, 256],
|
239 |
+
],
|
240 |
+
inputs=[
|
241 |
+
input_image,
|
242 |
+
use_face_model,
|
243 |
+
num_samples,
|
244 |
+
sr_scale,
|
245 |
+
disable_preprocess_model,
|
246 |
+
strength,
|
247 |
+
positive_prompt,
|
248 |
+
negative_prompt,
|
249 |
+
cfg_scale,
|
250 |
+
steps,
|
251 |
+
use_color_fix,
|
252 |
+
seed,
|
253 |
+
tiled,
|
254 |
+
tile_size,
|
255 |
+
tile_stride
|
256 |
+
],
|
257 |
+
outputs=[result_gallery],
|
258 |
+
fn=process,
|
259 |
+
cache_examples=True,
|
260 |
+
)
|
261 |
+
|
262 |
+
inputs = [
|
263 |
+
input_image,
|
264 |
+
use_face_model,
|
265 |
+
num_samples,
|
266 |
+
sr_scale,
|
267 |
+
disable_preprocess_model,
|
268 |
+
strength,
|
269 |
+
positive_prompt,
|
270 |
+
negative_prompt,
|
271 |
+
cfg_scale,
|
272 |
+
steps,
|
273 |
+
use_color_fix,
|
274 |
+
seed,
|
275 |
+
tiled,
|
276 |
+
tile_size,
|
277 |
+
tile_stride
|
278 |
+
]
|
279 |
+
run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])
|
280 |
+
|
281 |
+
block.launch()
|