Spaces:
Running
Running
ArToEngModel2
Browse files
app.py
CHANGED
@@ -1,42 +1,50 @@
|
|
1 |
import gradio as gr
|
2 |
import librosa
|
3 |
import torch
|
4 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor,
|
5 |
|
6 |
-
#
|
7 |
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
8 |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
9 |
|
10 |
-
#translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
11 |
-
#translation_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="ar_AR")
|
12 |
-
|
13 |
# Charger le modèle de traduction Arabe -> Anglais
|
14 |
translation_model_name = "Helsinki-NLP/opus-mt-ar-en"
|
15 |
translation_model = MarianMTModel.from_pretrained(translation_model_name)
|
16 |
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
17 |
|
18 |
-
|
19 |
def transcribe_audio(audio):
|
|
|
|
|
20 |
audio_array, sr = librosa.load(audio, sr=16000)
|
21 |
input_values = processor(audio_array, return_tensors="pt", padding=True).input_values
|
|
|
|
|
22 |
logits = model(input_values).logits
|
23 |
tokens = torch.argmax(logits, axis=-1)
|
|
|
|
|
24 |
transcription = processor.decode(tokens[0])
|
|
|
|
|
25 |
translation = translate_text(transcription)
|
|
|
26 |
return transcription, translation
|
27 |
|
28 |
def translate_text(text):
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
return translated_text
|
33 |
|
|
|
34 |
with gr.Blocks() as demo:
|
35 |
-
gr.Markdown("# Speech-to-Text
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
submit_button.click(transcribe_audio, inputs=[audio_input], outputs=[transcription_output, translation_output])
|
42 |
|
|
|
1 |
import gradio as gr
|
2 |
import librosa
|
3 |
import torch
|
4 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, MarianMTModel, MarianTokenizer
|
5 |
|
6 |
+
# Charger le modèle de transcription pour le Darija
|
7 |
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
8 |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
9 |
|
|
|
|
|
|
|
10 |
# Charger le modèle de traduction Arabe -> Anglais
|
11 |
translation_model_name = "Helsinki-NLP/opus-mt-ar-en"
|
12 |
translation_model = MarianMTModel.from_pretrained(translation_model_name)
|
13 |
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
14 |
|
|
|
15 |
def transcribe_audio(audio):
|
16 |
+
"""Convertir l'audio en texte et le traduire en anglais"""
|
17 |
+
# Charger et prétraiter l'audio
|
18 |
audio_array, sr = librosa.load(audio, sr=16000)
|
19 |
input_values = processor(audio_array, return_tensors="pt", padding=True).input_values
|
20 |
+
|
21 |
+
# Obtenir les prédictions du modèle
|
22 |
logits = model(input_values).logits
|
23 |
tokens = torch.argmax(logits, axis=-1)
|
24 |
+
|
25 |
+
# Décoder la transcription en Darija
|
26 |
transcription = processor.decode(tokens[0])
|
27 |
+
|
28 |
+
# Traduire en anglais
|
29 |
translation = translate_text(transcription)
|
30 |
+
|
31 |
return transcription, translation
|
32 |
|
33 |
def translate_text(text):
|
34 |
+
"""Traduire le texte de l'arabe vers l'anglais"""
|
35 |
+
inputs = translation_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
36 |
+
translated_tokens = translation_model.generate(**inputs)
|
37 |
+
translated_text = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
38 |
return translated_text
|
39 |
|
40 |
+
# Interface utilisateur avec Gradio
|
41 |
with gr.Blocks() as demo:
|
42 |
+
gr.Markdown("# 🎙️ Speech-to-Text & Translation")
|
43 |
+
|
44 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio or Record")
|
45 |
+
submit_button = gr.Button("Transcribe & Translate")
|
46 |
+
transcription_output = gr.Textbox(label="Transcription (Darija)")
|
47 |
+
translation_output = gr.Textbox(label="Translation (English)")
|
48 |
|
49 |
submit_button.click(transcribe_audio, inputs=[audio_input], outputs=[transcription_output, translation_output])
|
50 |
|