Spaces:
Running
Running
Helsinki-NLP
Browse files
app.py
CHANGED
@@ -1,14 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
import librosa
|
3 |
import torch
|
4 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, MBartForConditionalGeneration, MBart50Tokenizer
|
5 |
|
6 |
# Load pre-trained models
|
7 |
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
8 |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
9 |
|
10 |
-
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
11 |
-
translation_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="ar_AR")
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def transcribe_audio(audio):
|
14 |
audio_array, sr = librosa.load(audio, sr=16000)
|
|
|
1 |
import gradio as gr
|
2 |
import librosa
|
3 |
import torch
|
4 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, MBartForConditionalGeneration, MBart50Tokenizer, MarianMTModel, MarianTokenizer
|
5 |
|
6 |
# Load pre-trained models
|
7 |
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
8 |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
9 |
|
10 |
+
#translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
11 |
+
#translation_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="ar_AR")
|
12 |
+
|
13 |
+
# Charger le modèle de traduction Arabe -> Anglais
|
14 |
+
translation_model_name = "Helsinki-NLP/opus-mt-ar-en"
|
15 |
+
translation_model = MarianMTModel.from_pretrained(translation_model_name)
|
16 |
+
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
17 |
+
|
18 |
|
19 |
def transcribe_audio(audio):
|
20 |
audio_array, sr = librosa.load(audio, sr=16000)
|