Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,60 +3,35 @@ import librosa
|
|
3 |
import torch
|
4 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, MBartForConditionalGeneration, MBart50Tokenizer
|
5 |
|
6 |
-
# Load pre-trained
|
7 |
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
8 |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
9 |
|
10 |
-
# Load translation model
|
11 |
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
12 |
translation_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="ar_AR")
|
13 |
|
14 |
def transcribe_audio(audio):
|
15 |
-
if not audio:
|
16 |
-
return "No audio file provided", "No translation available"
|
17 |
-
|
18 |
-
# Load the audio file
|
19 |
audio_array, sr = librosa.load(audio, sr=16000)
|
20 |
-
|
21 |
-
# Tokenize the audio file
|
22 |
input_values = processor(audio_array, return_tensors="pt", padding=True).input_values
|
23 |
-
|
24 |
-
# Get the model's logits (predicted token scores)
|
25 |
logits = model(input_values).logits
|
26 |
-
|
27 |
-
# Get the predicted tokens
|
28 |
tokens = torch.argmax(logits, axis=-1)
|
29 |
-
|
30 |
-
# Decode the tokens into text (Darija transcription)
|
31 |
transcription = processor.decode(tokens[0])
|
32 |
-
|
33 |
-
# Translate the transcription to English
|
34 |
translation = translate_text(transcription)
|
35 |
-
|
36 |
return transcription, translation
|
37 |
|
38 |
def translate_text(text):
|
39 |
-
# Tokenize the text to translate
|
40 |
inputs = translation_tokenizer(text, return_tensors="pt")
|
41 |
-
|
42 |
-
# Generate translated tokens (from Darija to English)
|
43 |
-
translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en"])
|
44 |
-
|
45 |
-
# Decode the translated tokens into text
|
46 |
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
47 |
-
|
48 |
return translated_text
|
49 |
|
50 |
-
# Create Gradio Blocks for better UI
|
51 |
with gr.Blocks() as demo:
|
52 |
gr.Markdown("# Speech-to-Text and Translation")
|
53 |
-
gr.
|
54 |
-
|
55 |
-
audio_input = gr.Audio(type="filepath", label="Upload or Record Audio")
|
56 |
submit_button = gr.Button("Submit")
|
57 |
-
transcription_output = gr.Textbox(label="Transcription
|
58 |
-
translation_output = gr.Textbox(label="Translation
|
59 |
-
|
60 |
-
submit_button.click(
|
61 |
|
62 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, MBartForConditionalGeneration, MBart50Tokenizer
|
5 |
|
6 |
+
# Load pre-trained models
|
7 |
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
8 |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
9 |
|
|
|
10 |
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
11 |
translation_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="ar_AR")
|
12 |
|
13 |
def transcribe_audio(audio):
|
|
|
|
|
|
|
|
|
14 |
audio_array, sr = librosa.load(audio, sr=16000)
|
|
|
|
|
15 |
input_values = processor(audio_array, return_tensors="pt", padding=True).input_values
|
|
|
|
|
16 |
logits = model(input_values).logits
|
|
|
|
|
17 |
tokens = torch.argmax(logits, axis=-1)
|
|
|
|
|
18 |
transcription = processor.decode(tokens[0])
|
|
|
|
|
19 |
translation = translate_text(transcription)
|
|
|
20 |
return transcription, translation
|
21 |
|
22 |
def translate_text(text):
|
|
|
23 |
inputs = translation_tokenizer(text, return_tensors="pt")
|
24 |
+
translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en_XX"])
|
|
|
|
|
|
|
|
|
25 |
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
|
|
26 |
return translated_text
|
27 |
|
|
|
28 |
with gr.Blocks() as demo:
|
29 |
gr.Markdown("# Speech-to-Text and Translation")
|
30 |
+
audio_input = gr.Audio(type="filepath")
|
|
|
|
|
31 |
submit_button = gr.Button("Submit")
|
32 |
+
transcription_output = gr.Textbox(label="Transcription")
|
33 |
+
translation_output = gr.Textbox(label="Translation")
|
34 |
+
|
35 |
+
submit_button.click(transcribe_audio, inputs=[audio_input], outputs=[transcription_output, translation_output])
|
36 |
|
37 |
demo.launch()
|