Mohssinibra commited on
Commit
c7f40c9
·
verified ·
1 Parent(s): 1a38424

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -32
app.py CHANGED
@@ -3,60 +3,35 @@ import librosa
3
  import torch
4
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, MBartForConditionalGeneration, MBart50Tokenizer
5
 
6
- # Load pre-trained model and processor directly from Hugging Face Hub
7
  model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
8
  processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
9
 
10
- # Load translation model
11
  translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
12
  translation_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="ar_AR")
13
 
14
  def transcribe_audio(audio):
15
- if not audio:
16
- return "No audio file provided", "No translation available"
17
-
18
- # Load the audio file
19
  audio_array, sr = librosa.load(audio, sr=16000)
20
-
21
- # Tokenize the audio file
22
  input_values = processor(audio_array, return_tensors="pt", padding=True).input_values
23
-
24
- # Get the model's logits (predicted token scores)
25
  logits = model(input_values).logits
26
-
27
- # Get the predicted tokens
28
  tokens = torch.argmax(logits, axis=-1)
29
-
30
- # Decode the tokens into text (Darija transcription)
31
  transcription = processor.decode(tokens[0])
32
-
33
- # Translate the transcription to English
34
  translation = translate_text(transcription)
35
-
36
  return transcription, translation
37
 
38
  def translate_text(text):
39
- # Tokenize the text to translate
40
  inputs = translation_tokenizer(text, return_tensors="pt")
41
-
42
- # Generate translated tokens (from Darija to English)
43
- translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en"])
44
-
45
- # Decode the translated tokens into text
46
  translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
47
-
48
  return translated_text
49
 
50
- # Create Gradio Blocks for better UI
51
  with gr.Blocks() as demo:
52
  gr.Markdown("# Speech-to-Text and Translation")
53
- gr.Markdown("Upload an audio file to transcribe and translate it from Darija to English.")
54
-
55
- audio_input = gr.Audio(type="filepath", label="Upload or Record Audio")
56
  submit_button = gr.Button("Submit")
57
- transcription_output = gr.Textbox(label="Transcription (Darija)")
58
- translation_output = gr.Textbox(label="Translation (English)")
59
-
60
- submit_button.click(fn=transcribe_audio, inputs=audio_input, outputs=[transcription_output, translation_output])
61
 
62
  demo.launch()
 
3
  import torch
4
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, MBartForConditionalGeneration, MBart50Tokenizer
5
 
6
+ # Load pre-trained models
7
  model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
8
  processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
9
 
 
10
  translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
11
  translation_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="ar_AR")
12
 
13
  def transcribe_audio(audio):
 
 
 
 
14
  audio_array, sr = librosa.load(audio, sr=16000)
 
 
15
  input_values = processor(audio_array, return_tensors="pt", padding=True).input_values
 
 
16
  logits = model(input_values).logits
 
 
17
  tokens = torch.argmax(logits, axis=-1)
 
 
18
  transcription = processor.decode(tokens[0])
 
 
19
  translation = translate_text(transcription)
 
20
  return transcription, translation
21
 
22
  def translate_text(text):
 
23
  inputs = translation_tokenizer(text, return_tensors="pt")
24
+ translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en_XX"])
 
 
 
 
25
  translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
 
26
  return translated_text
27
 
 
28
  with gr.Blocks() as demo:
29
  gr.Markdown("# Speech-to-Text and Translation")
30
+ audio_input = gr.Audio(type="filepath")
 
 
31
  submit_button = gr.Button("Submit")
32
+ transcription_output = gr.Textbox(label="Transcription")
33
+ translation_output = gr.Textbox(label="Translation")
34
+
35
+ submit_button.click(transcribe_audio, inputs=[audio_input], outputs=[transcription_output, translation_output])
36
 
37
  demo.launch()