Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from langchain.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.vectorstores import Chroma
|
@@ -9,30 +10,39 @@ from langchain.llms import HuggingFacePipeline
|
|
9 |
from langchain.chains import ConversationChain
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.llms import HuggingFaceHub
|
|
|
12 |
from pathlib import Path
|
13 |
import chromadb
|
|
|
14 |
from transformers import AutoTokenizer
|
15 |
import transformers
|
16 |
import torch
|
17 |
import tqdm
|
18 |
import accelerate
|
19 |
|
|
|
|
|
20 |
llm_name0 = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
21 |
-
list_llm = [llm_name0]
|
22 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
23 |
|
24 |
# Load PDF document and create doc splits
|
25 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
|
|
|
|
|
26 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
27 |
pages = []
|
28 |
for loader in loaders:
|
29 |
pages.extend(loader.load())
|
|
|
30 |
text_splitter = RecursiveCharacterTextSplitter(
|
31 |
chunk_size = chunk_size,
|
32 |
chunk_overlap = chunk_overlap)
|
33 |
doc_splits = text_splitter.split_documents(pages)
|
34 |
return doc_splits
|
35 |
|
|
|
36 |
# Create vector database
|
37 |
def create_db(splits, collection_name):
|
38 |
embedding = HuggingFaceEmbeddings()
|
@@ -42,32 +52,38 @@ def create_db(splits, collection_name):
|
|
42 |
embedding=embedding,
|
43 |
client=new_client,
|
44 |
collection_name=collection_name,
|
|
|
45 |
)
|
46 |
return vectordb
|
47 |
|
|
|
48 |
# Load vector database
|
49 |
def load_db():
|
50 |
embedding = HuggingFaceEmbeddings()
|
51 |
vectordb = Chroma(
|
|
|
52 |
embedding_function=embedding)
|
53 |
return vectordb
|
54 |
|
|
|
55 |
# Initialize langchain LLM chain
|
56 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
57 |
progress(0.1, desc="Initializing HF tokenizer...")
|
58 |
progress(0.5, desc="Initializing HF Hub...")
|
|
|
59 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
60 |
llm = HuggingFaceHub(
|
61 |
repo_id=llm_model,
|
62 |
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
63 |
)
|
|
|
64 |
progress(0.75, desc="Defining buffer memory...")
|
65 |
memory = ConversationBufferMemory(
|
66 |
memory_key="chat_history",
|
67 |
output_key='answer',
|
68 |
return_messages=True
|
69 |
)
|
70 |
-
|
71 |
retriever=vector_db.as_retriever()
|
72 |
progress(0.8, desc="Defining retrieval chain...")
|
73 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
@@ -75,27 +91,42 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
75 |
retriever=retriever,
|
76 |
chain_type="stuff",
|
77 |
memory=memory,
|
|
|
78 |
return_source_documents=True,
|
|
|
|
|
79 |
)
|
80 |
progress(0.9, desc="Done!")
|
81 |
return qa_chain
|
82 |
|
|
|
|
|
83 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
|
|
|
|
84 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
85 |
collection_name = Path(list_file_path[0]).stem
|
|
|
|
|
86 |
progress(0.25, desc="Loading document...")
|
|
|
87 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
|
|
88 |
progress(0.5, desc="Generating vector database...")
|
|
|
89 |
vector_db = create_db(doc_splits, collection_name)
|
90 |
progress(0.9, desc="Done!")
|
91 |
return vector_db, collection_name, "Complete!"
|
92 |
|
|
|
93 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
94 |
llm_name = list_llm[llm_option]
|
95 |
print("llm_name: ",llm_name)
|
96 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
97 |
return qa_chain, "Complete!"
|
98 |
|
|
|
99 |
def format_chat_history(message, chat_history):
|
100 |
formatted_chat_history = []
|
101 |
for user_message, bot_message in chat_history:
|
@@ -103,25 +134,39 @@ def format_chat_history(message, chat_history):
|
|
103 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
104 |
return formatted_chat_history
|
105 |
|
|
|
106 |
def conversation(qa_chain, message, history):
|
107 |
formatted_chat_history = format_chat_history(message, history)
|
|
|
|
|
|
|
108 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
109 |
response_answer = response["answer"]
|
110 |
response_sources = response["source_documents"]
|
111 |
response_source1 = response_sources[0].page_content.strip()
|
112 |
response_source2 = response_sources[1].page_content.strip()
|
|
|
113 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
114 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
|
|
|
|
|
|
|
|
115 |
new_history = history + [(message, response_answer)]
|
|
|
116 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page
|
117 |
|
|
|
118 |
def upload_file(file_obj):
|
119 |
list_file_path = []
|
120 |
for idx, file in enumerate(file_obj):
|
121 |
file_path = file_obj.name
|
122 |
list_file_path.append(file_path)
|
|
|
|
|
123 |
return list_file_path
|
124 |
|
|
|
125 |
def demo():
|
126 |
with gr.Blocks(theme="base") as demo:
|
127 |
vector_db = gr.State()
|
@@ -129,10 +174,16 @@ def demo():
|
|
129 |
collection_name = gr.State()
|
130 |
|
131 |
gr.Markdown(
|
132 |
-
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
|
|
|
|
|
|
|
|
|
|
|
133 |
with gr.Tab("Step 1 - Document pre-processing"):
|
134 |
with gr.Row():
|
135 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
|
|
136 |
with gr.Row():
|
137 |
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
138 |
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
@@ -177,6 +228,7 @@ def demo():
|
|
177 |
clear_btn = gr.ClearButton([msg, chatbot])
|
178 |
|
179 |
# Preprocessing events
|
|
|
180 |
db_btn.click(initialize_database, \
|
181 |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
182 |
outputs=[vector_db, collection_name, db_progress])
|
@@ -202,5 +254,6 @@ def demo():
|
|
202 |
queue=False)
|
203 |
demo.queue().launch(debug=True)
|
204 |
|
|
|
205 |
if __name__ == "__main__":
|
206 |
demo()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.vectorstores import Chroma
|
|
|
10 |
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.llms import HuggingFaceHub
|
13 |
+
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
+
|
17 |
from transformers import AutoTokenizer
|
18 |
import transformers
|
19 |
import torch
|
20 |
import tqdm
|
21 |
import accelerate
|
22 |
|
23 |
+
|
24 |
+
|
25 |
llm_name0 = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
26 |
+
list_llm = [llm_name0, llm_name1, llm_name2, llm_name3, llm_name4, llm_name5, llm_name6, llm_name7, llm_name8]
|
27 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
28 |
|
29 |
# Load PDF document and create doc splits
|
30 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
31 |
+
# Processing for one document only
|
32 |
+
# loader = PyPDFLoader(file_path)
|
33 |
+
# pages = loader.load()
|
34 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
35 |
pages = []
|
36 |
for loader in loaders:
|
37 |
pages.extend(loader.load())
|
38 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
39 |
text_splitter = RecursiveCharacterTextSplitter(
|
40 |
chunk_size = chunk_size,
|
41 |
chunk_overlap = chunk_overlap)
|
42 |
doc_splits = text_splitter.split_documents(pages)
|
43 |
return doc_splits
|
44 |
|
45 |
+
|
46 |
# Create vector database
|
47 |
def create_db(splits, collection_name):
|
48 |
embedding = HuggingFaceEmbeddings()
|
|
|
52 |
embedding=embedding,
|
53 |
client=new_client,
|
54 |
collection_name=collection_name,
|
55 |
+
# persist_directory=default_persist_directory
|
56 |
)
|
57 |
return vectordb
|
58 |
|
59 |
+
|
60 |
# Load vector database
|
61 |
def load_db():
|
62 |
embedding = HuggingFaceEmbeddings()
|
63 |
vectordb = Chroma(
|
64 |
+
# persist_directory=default_persist_directory,
|
65 |
embedding_function=embedding)
|
66 |
return vectordb
|
67 |
|
68 |
+
|
69 |
# Initialize langchain LLM chain
|
70 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
71 |
progress(0.1, desc="Initializing HF tokenizer...")
|
72 |
progress(0.5, desc="Initializing HF Hub...")
|
73 |
+
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
74 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
75 |
llm = HuggingFaceHub(
|
76 |
repo_id=llm_model,
|
77 |
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
78 |
)
|
79 |
+
|
80 |
progress(0.75, desc="Defining buffer memory...")
|
81 |
memory = ConversationBufferMemory(
|
82 |
memory_key="chat_history",
|
83 |
output_key='answer',
|
84 |
return_messages=True
|
85 |
)
|
86 |
+
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
87 |
retriever=vector_db.as_retriever()
|
88 |
progress(0.8, desc="Defining retrieval chain...")
|
89 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
|
|
91 |
retriever=retriever,
|
92 |
chain_type="stuff",
|
93 |
memory=memory,
|
94 |
+
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
95 |
return_source_documents=True,
|
96 |
+
# return_generated_question=True,
|
97 |
+
# verbose=True,
|
98 |
)
|
99 |
progress(0.9, desc="Done!")
|
100 |
return qa_chain
|
101 |
|
102 |
+
|
103 |
+
# Initialize database
|
104 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
105 |
+
# Create list of documents (when valid)
|
106 |
+
#file_path = file_obj.name
|
107 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
108 |
collection_name = Path(list_file_path[0]).stem
|
109 |
+
# print('list_file_path: ', list_file_path)
|
110 |
+
# print('Collection name: ', collection_name)
|
111 |
progress(0.25, desc="Loading document...")
|
112 |
+
# Load document and create splits
|
113 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
114 |
+
# Create or load Vector database
|
115 |
progress(0.5, desc="Generating vector database...")
|
116 |
+
# global vector_db
|
117 |
vector_db = create_db(doc_splits, collection_name)
|
118 |
progress(0.9, desc="Done!")
|
119 |
return vector_db, collection_name, "Complete!"
|
120 |
|
121 |
+
|
122 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
123 |
+
# print("llm_option",llm_option)
|
124 |
llm_name = list_llm[llm_option]
|
125 |
print("llm_name: ",llm_name)
|
126 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
127 |
return qa_chain, "Complete!"
|
128 |
|
129 |
+
|
130 |
def format_chat_history(message, chat_history):
|
131 |
formatted_chat_history = []
|
132 |
for user_message, bot_message in chat_history:
|
|
|
134 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
135 |
return formatted_chat_history
|
136 |
|
137 |
+
|
138 |
def conversation(qa_chain, message, history):
|
139 |
formatted_chat_history = format_chat_history(message, history)
|
140 |
+
#print("formatted_chat_history",formatted_chat_history)
|
141 |
+
|
142 |
+
# Generate response using QA chain
|
143 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
144 |
response_answer = response["answer"]
|
145 |
response_sources = response["source_documents"]
|
146 |
response_source1 = response_sources[0].page_content.strip()
|
147 |
response_source2 = response_sources[1].page_content.strip()
|
148 |
+
# Langchain sources are zero-based
|
149 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
150 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
151 |
+
# print ('chat response: ', response_answer)
|
152 |
+
# print('DB source', response_sources)
|
153 |
+
|
154 |
+
# Append user message and response to chat history
|
155 |
new_history = history + [(message, response_answer)]
|
156 |
+
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
157 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page
|
158 |
|
159 |
+
|
160 |
def upload_file(file_obj):
|
161 |
list_file_path = []
|
162 |
for idx, file in enumerate(file_obj):
|
163 |
file_path = file_obj.name
|
164 |
list_file_path.append(file_path)
|
165 |
+
# print(file_path)
|
166 |
+
# initialize_database(file_path, progress)
|
167 |
return list_file_path
|
168 |
|
169 |
+
|
170 |
def demo():
|
171 |
with gr.Blocks(theme="base") as demo:
|
172 |
vector_db = gr.State()
|
|
|
174 |
collection_name = gr.State()
|
175 |
|
176 |
gr.Markdown(
|
177 |
+
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
|
178 |
+
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
|
179 |
+
<b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \
|
180 |
+
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
|
181 |
+
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
|
182 |
+
""")
|
183 |
with gr.Tab("Step 1 - Document pre-processing"):
|
184 |
with gr.Row():
|
185 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
186 |
+
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
187 |
with gr.Row():
|
188 |
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
189 |
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
|
|
228 |
clear_btn = gr.ClearButton([msg, chatbot])
|
229 |
|
230 |
# Preprocessing events
|
231 |
+
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
232 |
db_btn.click(initialize_database, \
|
233 |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
234 |
outputs=[vector_db, collection_name, db_progress])
|
|
|
254 |
queue=False)
|
255 |
demo.queue().launch(debug=True)
|
256 |
|
257 |
+
|
258 |
if __name__ == "__main__":
|
259 |
demo()
|