Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,20 +5,35 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
5 |
from langchain.vectorstores import Chroma
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
|
8 |
from langchain.llms import HuggingFaceHub
|
9 |
from pathlib import Path
|
10 |
import chromadb
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
|
|
14 |
|
|
|
15 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
16 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
17 |
-
pages = [
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
doc_splits = text_splitter.split_documents(pages)
|
20 |
return doc_splits
|
21 |
|
|
|
22 |
def create_db(splits, collection_name):
|
23 |
embedding = HuggingFaceEmbeddings()
|
24 |
new_client = chromadb.EphemeralClient()
|
@@ -30,26 +45,35 @@ def create_db(splits, collection_name):
|
|
30 |
)
|
31 |
return vectordb
|
32 |
|
|
|
33 |
def load_db():
|
34 |
embedding = HuggingFaceEmbeddings()
|
35 |
-
vectordb = Chroma(
|
|
|
36 |
return vectordb
|
37 |
|
|
|
38 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
39 |
progress(0.1, desc="Initializing HF tokenizer...")
|
40 |
progress(0.5, desc="Initializing HF Hub...")
|
41 |
-
model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
42 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
progress(0.75, desc="Defining buffer memory...")
|
46 |
-
memory = ConversationBufferMemory(
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
progress(0.8, desc="Defining retrieval chain...")
|
49 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
50 |
llm,
|
51 |
retriever=retriever,
|
52 |
-
chain_type="stuff",
|
53 |
memory=memory,
|
54 |
return_source_documents=True,
|
55 |
)
|
@@ -67,14 +91,18 @@ def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Pr
|
|
67 |
return vector_db, collection_name, "Complete!"
|
68 |
|
69 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
70 |
-
llm_name =
|
|
|
71 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
72 |
return qa_chain, "Complete!"
|
73 |
|
74 |
def format_chat_history(message, chat_history):
|
75 |
-
formatted_chat_history = [
|
|
|
|
|
|
|
76 |
return formatted_chat_history
|
77 |
-
|
78 |
def conversation(qa_chain, message, history):
|
79 |
formatted_chat_history = format_chat_history(message, history)
|
80 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
@@ -86,9 +114,12 @@ def conversation(qa_chain, message, history):
|
|
86 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
87 |
new_history = history + [(message, response_answer)]
|
88 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page
|
89 |
-
|
90 |
def upload_file(file_obj):
|
91 |
-
list_file_path = [
|
|
|
|
|
|
|
92 |
return list_file_path
|
93 |
|
94 |
def demo():
|
@@ -96,43 +127,79 @@ def demo():
|
|
96 |
vector_db = gr.State()
|
97 |
qa_chain = gr.State()
|
98 |
collection_name = gr.State()
|
99 |
-
|
100 |
-
gr.Markdown(
|
101 |
-
|
102 |
-
with gr.Tab("Step 1 -
|
103 |
-
|
104 |
-
|
|
|
|
|
105 |
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
with gr.Accordion("Advanced options - LLM model", open=False):
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
122 |
chatbot = gr.Chatbot(height=300)
|
123 |
-
with gr.Accordion("Advanced - Document references", open=
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
demo.queue().launch(debug=True)
|
137 |
|
138 |
if __name__ == "__main__":
|
|
|
5 |
from langchain.vectorstores import Chroma
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.llms import HuggingFacePipeline
|
9 |
+
from langchain.chains import ConversationChain
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.llms import HuggingFaceHub
|
12 |
from pathlib import Path
|
13 |
import chromadb
|
14 |
+
from transformers import AutoTokenizer
|
15 |
+
import transformers
|
16 |
+
import torch
|
17 |
+
import tqdm
|
18 |
+
import accelerate
|
19 |
|
20 |
+
llm_name0 = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
21 |
+
list_llm = [llm_name0]
|
22 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
23 |
|
24 |
+
# Load PDF document and create doc splits
|
25 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
26 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
27 |
+
pages = []
|
28 |
+
for loader in loaders:
|
29 |
+
pages.extend(loader.load())
|
30 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
31 |
+
chunk_size = chunk_size,
|
32 |
+
chunk_overlap = chunk_overlap)
|
33 |
doc_splits = text_splitter.split_documents(pages)
|
34 |
return doc_splits
|
35 |
|
36 |
+
# Create vector database
|
37 |
def create_db(splits, collection_name):
|
38 |
embedding = HuggingFaceEmbeddings()
|
39 |
new_client = chromadb.EphemeralClient()
|
|
|
45 |
)
|
46 |
return vectordb
|
47 |
|
48 |
+
# Load vector database
|
49 |
def load_db():
|
50 |
embedding = HuggingFaceEmbeddings()
|
51 |
+
vectordb = Chroma(
|
52 |
+
embedding_function=embedding)
|
53 |
return vectordb
|
54 |
|
55 |
+
# Initialize langchain LLM chain
|
56 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
57 |
progress(0.1, desc="Initializing HF tokenizer...")
|
58 |
progress(0.5, desc="Initializing HF Hub...")
|
|
|
59 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
60 |
+
llm = HuggingFaceHub(
|
61 |
+
repo_id=llm_model,
|
62 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
63 |
+
)
|
64 |
progress(0.75, desc="Defining buffer memory...")
|
65 |
+
memory = ConversationBufferMemory(
|
66 |
+
memory_key="chat_history",
|
67 |
+
output_key='answer',
|
68 |
+
return_messages=True
|
69 |
+
)
|
70 |
+
|
71 |
+
retriever=vector_db.as_retriever()
|
72 |
progress(0.8, desc="Defining retrieval chain...")
|
73 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
74 |
llm,
|
75 |
retriever=retriever,
|
76 |
+
chain_type="stuff",
|
77 |
memory=memory,
|
78 |
return_source_documents=True,
|
79 |
)
|
|
|
91 |
return vector_db, collection_name, "Complete!"
|
92 |
|
93 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
94 |
+
llm_name = list_llm[llm_option]
|
95 |
+
print("llm_name: ",llm_name)
|
96 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
97 |
return qa_chain, "Complete!"
|
98 |
|
99 |
def format_chat_history(message, chat_history):
|
100 |
+
formatted_chat_history = []
|
101 |
+
for user_message, bot_message in chat_history:
|
102 |
+
formatted_chat_history.append(f"User: {user_message}")
|
103 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
104 |
return formatted_chat_history
|
105 |
+
|
106 |
def conversation(qa_chain, message, history):
|
107 |
formatted_chat_history = format_chat_history(message, history)
|
108 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
|
|
114 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
115 |
new_history = history + [(message, response_answer)]
|
116 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page
|
117 |
+
|
118 |
def upload_file(file_obj):
|
119 |
+
list_file_path = []
|
120 |
+
for idx, file in enumerate(file_obj):
|
121 |
+
file_path = file_obj.name
|
122 |
+
list_file_path.append(file_path)
|
123 |
return list_file_path
|
124 |
|
125 |
def demo():
|
|
|
127 |
vector_db = gr.State()
|
128 |
qa_chain = gr.State()
|
129 |
collection_name = gr.State()
|
130 |
+
|
131 |
+
gr.Markdown(
|
132 |
+
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>""")
|
133 |
+
with gr.Tab("Step 1 - Document pre-processing"):
|
134 |
+
with gr.Row():
|
135 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
136 |
+
with gr.Row():
|
137 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
138 |
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
139 |
+
with gr.Row():
|
140 |
+
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
141 |
+
with gr.Row():
|
142 |
+
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
143 |
+
with gr.Row():
|
144 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
145 |
+
with gr.Row():
|
146 |
+
db_btn = gr.Button("Generate vector database...")
|
147 |
+
|
148 |
+
with gr.Tab("Step 2 - QA chain initialization"):
|
149 |
+
with gr.Row():
|
150 |
+
llm_btn = gr.Radio(list_llm_simple, \
|
151 |
+
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
152 |
with gr.Accordion("Advanced options - LLM model", open=False):
|
153 |
+
with gr.Row():
|
154 |
+
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
155 |
+
with gr.Row():
|
156 |
+
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
157 |
+
with gr.Row():
|
158 |
+
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
159 |
+
with gr.Row():
|
160 |
+
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
161 |
+
with gr.Row():
|
162 |
+
qachain_btn = gr.Button("Initialize question-answering chain...")
|
163 |
+
|
164 |
+
with gr.Tab("Step 3 - Conversation with chatbot"):
|
165 |
chatbot = gr.Chatbot(height=300)
|
166 |
+
with gr.Accordion("Advanced - Document references", open=False):
|
167 |
+
with gr.Row():
|
168 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
169 |
+
source1_page = gr.Number(label="Page", scale=1)
|
170 |
+
with gr.Row():
|
171 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
172 |
+
source2_page = gr.Number(label="Page", scale=1)
|
173 |
+
with gr.Row():
|
174 |
+
msg = gr.Textbox(placeholder="Type message", container=True)
|
175 |
+
with gr.Row():
|
176 |
+
submit_btn = gr.Button("Submit")
|
177 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
178 |
+
|
179 |
+
# Preprocessing events
|
180 |
+
db_btn.click(initialize_database, \
|
181 |
+
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
182 |
+
outputs=[vector_db, collection_name, db_progress])
|
183 |
+
qachain_btn.click(initialize_LLM, \
|
184 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
185 |
+
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0], \
|
186 |
+
inputs=None, \
|
187 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], \
|
188 |
+
queue=False)
|
189 |
+
|
190 |
+
# Chatbot events
|
191 |
+
msg.submit(conversation, \
|
192 |
+
inputs=[qa_chain, msg, chatbot], \
|
193 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
|
194 |
+
queue=False)
|
195 |
+
submit_btn.click(conversation, \
|
196 |
+
inputs=[qa_chain, msg, chatbot], \
|
197 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
|
198 |
+
queue=False)
|
199 |
+
clear_btn.click(lambda:[None,"",0,"",0], \
|
200 |
+
inputs=None, \
|
201 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], \
|
202 |
+
queue=False)
|
203 |
demo.queue().launch(debug=True)
|
204 |
|
205 |
if __name__ == "__main__":
|