MatteoScript commited on
Commit
878c0a1
·
verified ·
1 Parent(s): da842e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -223
app.py CHANGED
@@ -1,58 +1,24 @@
1
  import gradio as gr
2
  import os
3
-
4
  from langchain.document_loaders import PyPDFLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from langchain.vectorstores import Chroma
7
  from langchain.chains import ConversationalRetrievalChain
8
  from langchain.embeddings import HuggingFaceEmbeddings
9
- from langchain.llms import HuggingFacePipeline
10
- from langchain.chains import ConversationChain
11
- from langchain.memory import ConversationBufferMemory
12
  from langchain.llms import HuggingFaceHub
13
-
14
  from pathlib import Path
15
  import chromadb
16
 
17
- from transformers import AutoTokenizer
18
- import transformers
19
- import torch
20
- import tqdm
21
- import accelerate
22
-
23
-
24
- # default_persist_directory = './chroma_HF/'
25
-
26
- llm_name0 = "mistralai/Mixtral-8x7B-Instruct-v0.1"
27
- llm_name1 = "mistralai/Mistral-7B-Instruct-v0.2"
28
- llm_name2 = "mistralai/Mistral-7B-Instruct-v0.1"
29
- llm_name3 = "meta-llama/Llama-2-7b-chat-hf"
30
- llm_name4 = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
31
- llm_name5 = "microsoft/phi-2"
32
- llm_name6 = "mosaicml/mpt-7b-instruct"
33
- llm_name7 = "tiiuae/falcon-7b-instruct"
34
- llm_name8 = "google/flan-t5-xxl"
35
- list_llm = [llm_name0, llm_name1, llm_name2, llm_name3, llm_name4, llm_name5, llm_name6, llm_name7, llm_name8]
36
- list_llm_simple = [os.path.basename(llm) for llm in list_llm]
37
 
38
- # Load PDF document and create doc splits
39
  def load_doc(list_file_path, chunk_size, chunk_overlap):
40
- # Processing for one document only
41
- # loader = PyPDFLoader(file_path)
42
- # pages = loader.load()
43
  loaders = [PyPDFLoader(x) for x in list_file_path]
44
- pages = []
45
- for loader in loaders:
46
- pages.extend(loader.load())
47
- # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
48
- text_splitter = RecursiveCharacterTextSplitter(
49
- chunk_size = chunk_size,
50
- chunk_overlap = chunk_overlap)
51
  doc_splits = text_splitter.split_documents(pages)
52
  return doc_splits
53
 
54
-
55
- # Create vector database
56
  def create_db(splits, collection_name):
57
  embedding = HuggingFaceEmbeddings()
58
  new_client = chromadb.EphemeralClient()
@@ -61,254 +27,113 @@ def create_db(splits, collection_name):
61
  embedding=embedding,
62
  client=new_client,
63
  collection_name=collection_name,
64
- # persist_directory=default_persist_directory
65
  )
66
  return vectordb
67
 
68
-
69
- # Load vector database
70
  def load_db():
71
  embedding = HuggingFaceEmbeddings()
72
- vectordb = Chroma(
73
- # persist_directory=default_persist_directory,
74
- embedding_function=embedding)
75
  return vectordb
76
 
77
-
78
- # Initialize langchain LLM chain
79
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
80
  progress(0.1, desc="Initializing HF tokenizer...")
81
- # HuggingFacePipeline uses local model
82
- # Note: it will download model locally...
83
- # tokenizer=AutoTokenizer.from_pretrained(llm_model)
84
- # progress(0.5, desc="Initializing HF pipeline...")
85
- # pipeline=transformers.pipeline(
86
- # "text-generation",
87
- # model=llm_model,
88
- # tokenizer=tokenizer,
89
- # torch_dtype=torch.bfloat16,
90
- # trust_remote_code=True,
91
- # device_map="auto",
92
- # # max_length=1024,
93
- # max_new_tokens=max_tokens,
94
- # do_sample=True,
95
- # top_k=top_k,
96
- # num_return_sequences=1,
97
- # eos_token_id=tokenizer.eos_token_id
98
- # )
99
- # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
100
-
101
- # HuggingFaceHub uses HF inference endpoints
102
  progress(0.5, desc="Initializing HF Hub...")
103
- # Use of trust_remote_code as model_kwargs
104
- # Warning: langchain issue
105
- # URL: https://github.com/langchain-ai/langchain/issues/6080
106
  if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
107
- llm = HuggingFaceHub(
108
- repo_id=llm_model,
109
- model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
110
- )
111
- elif llm_model == "microsoft/phi-2":
112
- raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
113
- llm = HuggingFaceHub(
114
- repo_id=llm_model,
115
- model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
116
- )
117
- elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
118
- llm = HuggingFaceHub(
119
- repo_id=llm_model,
120
- model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
121
- )
122
- elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
123
- raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
124
- llm = HuggingFaceHub(
125
- repo_id=llm_model,
126
- model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
127
- )
128
- else:
129
- llm = HuggingFaceHub(
130
- repo_id=llm_model,
131
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
132
- model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
133
- )
134
-
135
  progress(0.75, desc="Defining buffer memory...")
136
- memory = ConversationBufferMemory(
137
- memory_key="chat_history",
138
- output_key='answer',
139
- return_messages=True
140
- )
141
- # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
142
- retriever=vector_db.as_retriever()
143
  progress(0.8, desc="Defining retrieval chain...")
144
  qa_chain = ConversationalRetrievalChain.from_llm(
145
  llm,
146
  retriever=retriever,
147
- chain_type="stuff",
148
  memory=memory,
149
- # combine_docs_chain_kwargs={"prompt": your_prompt})
150
  return_source_documents=True,
151
- # return_generated_question=True,
152
- # verbose=True,
153
  )
154
  progress(0.9, desc="Done!")
155
  return qa_chain
156
 
157
-
158
- # Initialize database
159
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
160
- # Create list of documents (when valid)
161
- #file_path = file_obj.name
162
  list_file_path = [x.name for x in list_file_obj if x is not None]
163
  collection_name = Path(list_file_path[0]).stem
164
- # print('list_file_path: ', list_file_path)
165
- # print('Collection name: ', collection_name)
166
  progress(0.25, desc="Loading document...")
167
- # Load document and create splits
168
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
169
- # Create or load Vector database
170
  progress(0.5, desc="Generating vector database...")
171
- # global vector_db
172
  vector_db = create_db(doc_splits, collection_name)
173
  progress(0.9, desc="Done!")
174
  return vector_db, collection_name, "Complete!"
175
 
176
-
177
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
178
- # print("llm_option",llm_option)
179
- llm_name = list_llm[llm_option]
180
- print("llm_name: ",llm_name)
181
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
182
  return qa_chain, "Complete!"
183
 
184
-
185
  def format_chat_history(message, chat_history):
186
- formatted_chat_history = []
187
- for user_message, bot_message in chat_history:
188
- formatted_chat_history.append(f"User: {user_message}")
189
- formatted_chat_history.append(f"Assistant: {bot_message}")
190
  return formatted_chat_history
191
-
192
 
193
  def conversation(qa_chain, message, history):
194
  formatted_chat_history = format_chat_history(message, history)
195
- #print("formatted_chat_history",formatted_chat_history)
196
-
197
- # Generate response using QA chain
198
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
199
  response_answer = response["answer"]
200
  response_sources = response["source_documents"]
201
  response_source1 = response_sources[0].page_content.strip()
202
  response_source2 = response_sources[1].page_content.strip()
203
- # Langchain sources are zero-based
204
  response_source1_page = response_sources[0].metadata["page"] + 1
205
  response_source2_page = response_sources[1].metadata["page"] + 1
206
- # print ('chat response: ', response_answer)
207
- # print('DB source', response_sources)
208
-
209
- # Append user message and response to chat history
210
  new_history = history + [(message, response_answer)]
211
- # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
212
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page
213
-
214
 
215
  def upload_file(file_obj):
216
- list_file_path = []
217
- for idx, file in enumerate(file_obj):
218
- file_path = file_obj.name
219
- list_file_path.append(file_path)
220
- # print(file_path)
221
- # initialize_database(file_path, progress)
222
  return list_file_path
223
 
224
-
225
  def demo():
226
  with gr.Blocks(theme="base") as demo:
227
  vector_db = gr.State()
228
  qa_chain = gr.State()
229
  collection_name = gr.State()
230
-
231
- gr.Markdown(
232
- """<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
233
- <h3>Ask any questions about your PDF documents, along with follow-ups</h3>
234
- <b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \
235
- When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
236
- <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
237
- """)
238
- with gr.Tab("Step 1 - Document pre-processing"):
239
- with gr.Row():
240
- document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
241
- # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
242
- with gr.Row():
243
- db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
244
  with gr.Accordion("Advanced options - Document text splitter", open=False):
245
- with gr.Row():
246
- slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
247
- with gr.Row():
248
- slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
249
- with gr.Row():
250
- db_progress = gr.Textbox(label="Vector database initialization", value="None")
251
- with gr.Row():
252
- db_btn = gr.Button("Generate vector database...")
253
-
254
- with gr.Tab("Step 2 - QA chain initialization"):
255
- with gr.Row():
256
- llm_btn = gr.Radio(list_llm_simple, \
257
- label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
258
- with gr.Accordion("Advanced options - LLM model", open=False):
259
- with gr.Row():
260
- slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
261
- with gr.Row():
262
- slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
263
- with gr.Row():
264
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
265
- with gr.Row():
266
- llm_progress = gr.Textbox(value="None",label="QA chain initialization")
267
- with gr.Row():
268
- qachain_btn = gr.Button("Initialize question-answering chain...")
269
 
270
- with gr.Tab("Step 3 - Conversation with chatbot"):
 
 
 
 
 
 
 
 
 
 
271
  chatbot = gr.Chatbot(height=300)
272
- with gr.Accordion("Advanced - Document references", open=False):
273
- with gr.Row():
274
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
275
- source1_page = gr.Number(label="Page", scale=1)
276
- with gr.Row():
277
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
278
- source2_page = gr.Number(label="Page", scale=1)
279
- with gr.Row():
280
- msg = gr.Textbox(placeholder="Type message", container=True)
281
- with gr.Row():
282
- submit_btn = gr.Button("Submit")
283
- clear_btn = gr.ClearButton([msg, chatbot])
284
-
285
- # Preprocessing events
286
- #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
287
- db_btn.click(initialize_database, \
288
- inputs=[document, slider_chunk_size, slider_chunk_overlap], \
289
- outputs=[vector_db, collection_name, db_progress])
290
- qachain_btn.click(initialize_LLM, \
291
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
292
- outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0], \
293
- inputs=None, \
294
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], \
295
- queue=False)
296
 
297
- # Chatbot events
298
- msg.submit(conversation, \
299
- inputs=[qa_chain, msg, chatbot], \
300
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
301
- queue=False)
302
- submit_btn.click(conversation, \
303
- inputs=[qa_chain, msg, chatbot], \
304
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
305
- queue=False)
306
- clear_btn.click(lambda:[None,"",0,"",0], \
307
- inputs=None, \
308
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], \
309
- queue=False)
310
  demo.queue().launch(debug=True)
311
 
312
-
313
  if __name__ == "__main__":
314
- demo()
 
1
  import gradio as gr
2
  import os
 
3
  from langchain.document_loaders import PyPDFLoader
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain.vectorstores import Chroma
6
  from langchain.chains import ConversationalRetrievalChain
7
  from langchain.embeddings import HuggingFaceEmbeddings
 
 
 
8
  from langchain.llms import HuggingFaceHub
 
9
  from pathlib import Path
10
  import chromadb
11
 
12
+ llm_names = ["mistralai/Mixtral-8x7B-Instruct-v0.1"]
13
+ llm_names_simple = [os.path.basename(llm) for llm in llm_names]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
 
15
  def load_doc(list_file_path, chunk_size, chunk_overlap):
 
 
 
16
  loaders = [PyPDFLoader(x) for x in list_file_path]
17
+ pages = [loader.load() for loader in loaders]
18
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
 
 
 
 
 
19
  doc_splits = text_splitter.split_documents(pages)
20
  return doc_splits
21
 
 
 
22
  def create_db(splits, collection_name):
23
  embedding = HuggingFaceEmbeddings()
24
  new_client = chromadb.EphemeralClient()
 
27
  embedding=embedding,
28
  client=new_client,
29
  collection_name=collection_name,
 
30
  )
31
  return vectordb
32
 
 
 
33
  def load_db():
34
  embedding = HuggingFaceEmbeddings()
35
+ vectordb = Chroma(embedding_function=embedding)
 
 
36
  return vectordb
37
 
 
 
38
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
39
  progress(0.1, desc="Initializing HF tokenizer...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  progress(0.5, desc="Initializing HF Hub...")
41
+ model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
 
 
42
  if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
43
+ model_kwargs["load_in_8bit"] = True
44
+ llm = HuggingFaceHub(repo_id=llm_model, model_kwargs=model_kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  progress(0.75, desc="Defining buffer memory...")
46
+ memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
47
+ retriever = vector_db.as_retriever()
 
 
 
 
 
48
  progress(0.8, desc="Defining retrieval chain...")
49
  qa_chain = ConversationalRetrievalChain.from_llm(
50
  llm,
51
  retriever=retriever,
52
+ chain_type="stuff",
53
  memory=memory,
 
54
  return_source_documents=True,
 
 
55
  )
56
  progress(0.9, desc="Done!")
57
  return qa_chain
58
 
 
 
59
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
 
 
60
  list_file_path = [x.name for x in list_file_obj if x is not None]
61
  collection_name = Path(list_file_path[0]).stem
 
 
62
  progress(0.25, desc="Loading document...")
 
63
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
 
64
  progress(0.5, desc="Generating vector database...")
 
65
  vector_db = create_db(doc_splits, collection_name)
66
  progress(0.9, desc="Done!")
67
  return vector_db, collection_name, "Complete!"
68
 
 
69
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
70
+ llm_name = llm_names[llm_option]
 
 
71
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
72
  return qa_chain, "Complete!"
73
 
 
74
  def format_chat_history(message, chat_history):
75
+ formatted_chat_history = [f"User: {user_message}\nAssistant: {bot_message}" for user_message, bot_message in chat_history]
 
 
 
76
  return formatted_chat_history
 
77
 
78
  def conversation(qa_chain, message, history):
79
  formatted_chat_history = format_chat_history(message, history)
 
 
 
80
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
81
  response_answer = response["answer"]
82
  response_sources = response["source_documents"]
83
  response_source1 = response_sources[0].page_content.strip()
84
  response_source2 = response_sources[1].page_content.strip()
 
85
  response_source1_page = response_sources[0].metadata["page"] + 1
86
  response_source2_page = response_sources[1].metadata["page"] + 1
 
 
 
 
87
  new_history = history + [(message, response_answer)]
 
88
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page
 
89
 
90
  def upload_file(file_obj):
91
+ list_file_path = [file_obj.name for _ in file_obj]
 
 
 
 
 
92
  return list_file_path
93
 
 
94
  def demo():
95
  with gr.Blocks(theme="base") as demo:
96
  vector_db = gr.State()
97
  qa_chain = gr.State()
98
  collection_name = gr.State()
99
+
100
+ gr.Markdown("""<center><h2>ChatPDF</center></h2>""")
101
+
102
+ with gr.Tab("Step 1 - Selezione PDF"):
103
+ document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
104
+ db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index", info="Choose your vector database")
 
 
 
 
 
 
 
 
105
  with gr.Accordion("Advanced options - Document text splitter", open=False):
106
+ slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
107
+ slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
108
+ db_progress = gr.Textbox(label="Vector database initialization", value="None")
109
+ db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
+ with gr.Tab("Step 2 - Inizializzazione QA"):
112
+ llm_btn = gr.Radio(llm_names_simple, label="LLM models", value=llm_names_simple[0], type="index", info="Choose your LLM model")
113
+ with gr.Accordion("Advanced options - LLM model", open=False):
114
+ slider_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
115
+ slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
116
+ slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
117
+ llm_progress = gr.Textbox(value="None", label="QA chain initialization")
118
+ qachain_btn = gr.Button("Initialize question-answering chain...")
119
+ qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(lambda: [None, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], queue=False)
120
+
121
+ with gr.Tab("Step 3 - Conversazione con Chatbot"):
122
  chatbot = gr.Chatbot(height=300)
123
+ with gr.Accordion("Advanced - Document references", open=True):
124
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
125
+ source1_page = gr.Number(label="Page", scale=1)
126
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
127
+ source2_page = gr.Number(label="Page", scale=1)
128
+ msg = gr.Textbox(placeholder="Type message", container=True)
129
+ submit_btn = gr.Button("Submit")
130
+ clear_btn = gr.ClearButton([msg, chatbot])
131
+
132
+ msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], queue=False)
133
+ submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], queue=False)
134
+ clear_btn.click(lambda: [None, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  demo.queue().launch(debug=True)
137
 
 
138
  if __name__ == "__main__":
139
+ demo()