MarcoParola commited on
Commit
da0e039
·
1 Parent(s): 2826168

add following features: update dropdowns after each rank submission, save the results at the end of the form in the dataset hub

Browse files
Files changed (2) hide show
  1. app.py +35 -18
  2. src/utils.py +4 -32
app.py CHANGED
@@ -2,15 +2,18 @@ import gradio as gr
2
  import yaml
3
  import random
4
  import os
 
 
 
5
 
6
- from src.utils import load_words, save_results, load_image_and_saliency, load_example_images
7
  from src.style import css
8
  from src.user import UserID
9
 
10
  def main():
11
  config = yaml.safe_load(open("config/config.yaml"))
12
  words = ['grad-cam', 'lime', 'sidu', 'rise']
13
- options = ['1', '2', '3', '4']
14
  class_names = config['dataset'][config['dataset']['name']]['class_names']
15
  data_dir = os.path.join(config['dataset']['path'], config['dataset']['name'])
16
 
@@ -22,11 +25,11 @@ def main():
22
  answers = gr.State([])
23
 
24
  with gr.Row():
25
- target_img_label = gr.Markdown(f"### Target image: {class_names[user_state.value]}")
26
- gr.Markdown("### Grad-cam")
27
- gr.Markdown("### Lime")
28
- gr.Markdown("### Sidu")
29
- gr.Markdown("### Rise")
30
 
31
  with gr.Row():
32
  count = user_state if isinstance(user_state, int) else user_state.value
@@ -115,19 +118,34 @@ def main():
115
  submit_button = gr.Button("Submit", visible=(count != max_images-1))
116
  return submit_button, finish_button
117
 
118
- def update_dropdowns(dropdowns):
119
- dropdown1 = gr.Dropdown(choices=options, label="grad-cam")
120
- dropdown2 = gr.Dropdown(choices=options, label="lime")
121
- dropdown3 = gr.Dropdown(choices=options, label="sidu")
122
- dropdown4 = gr.Dropdown(choices=options, label="rise")
123
- return dropdown1, dropdown2, dropdown3, dropdown4
124
 
125
  def redirect():
126
  pass
127
 
128
- def register_answers(answers):
129
- experiment_dir = config['results']['exp1_dir']
130
- save_results( experiment_dir, answers)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
  def add_answer(dropdown1,dropdown2,dropdown3,dropdown4, answers):
133
  rank = [dropdown1,dropdown2,dropdown3,dropdown4]
@@ -156,14 +174,13 @@ def main():
156
  outputs={target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise, img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16},
157
  ).then(
158
  update_dropdowns,
159
- inputs={dropdown1, dropdown2, dropdown3, dropdown4},
160
  outputs={dropdown1, dropdown2, dropdown3, dropdown4}
161
  )
162
 
163
  finish_button.click(
164
  add_answer, inputs=[dropdown1, dropdown2, dropdown3, dropdown4, answers],outputs=answers
165
  ).then(
166
- register_answers, inputs=answers
167
  ).then(
168
  redirect, js="window.location = 'https://marcoparola.github.io/saliency-evaluation-app/end'")
169
 
 
2
  import yaml
3
  import random
4
  import os
5
+ import json
6
+ from pathlib import Path
7
+ from huggingface_hub import CommitScheduler
8
 
9
+ from src.utils import load_words, load_image_and_saliency, load_example_images
10
  from src.style import css
11
  from src.user import UserID
12
 
13
  def main():
14
  config = yaml.safe_load(open("config/config.yaml"))
15
  words = ['grad-cam', 'lime', 'sidu', 'rise']
16
+ options = ['-', '1', '2', '3', '4']
17
  class_names = config['dataset'][config['dataset']['name']]['class_names']
18
  data_dir = os.path.join(config['dataset']['path'], config['dataset']['name'])
19
 
 
25
  answers = gr.State([])
26
 
27
  with gr.Row():
28
+ target_img_label = gr.Markdown(f"Target image: **{class_names[user_state.value]}**")
29
+ gr.Markdown("Grad-cam")
30
+ gr.Markdown("Lime")
31
+ gr.Markdown("Sidu")
32
+ gr.Markdown("Rise")
33
 
34
  with gr.Row():
35
  count = user_state if isinstance(user_state, int) else user_state.value
 
118
  submit_button = gr.Button("Submit", visible=(count != max_images-1))
119
  return submit_button, finish_button
120
 
121
+ def update_dropdowns():
122
+ dp1 = gr.Dropdown(choices=options, value=options[0], label="grad-cam")
123
+ dp2 = gr.Dropdown(choices=options, value=options[0], label="lime")
124
+ dp3 = gr.Dropdown(choices=options, value=options[0], label="sidu")
125
+ dp4 = gr.Dropdown(choices=options, value=options[0], label="rise")
126
+ return dp1, dp2, dp3, dp4
127
 
128
  def redirect():
129
  pass
130
 
131
+ def save_results(answers):
132
+ json_file_results = config['results']['exp1_dir']
133
+ JSON_DATASET_DIR = Path("json_dataset")
134
+ JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
135
+ JSON_DATASET_PATH = JSON_DATASET_DIR / json_file_results
136
+ scheduler = CommitScheduler(
137
+ repo_id="results",
138
+ repo_type="dataset",
139
+ folder_path=JSON_DATASET_DIR,
140
+ path_in_repo="data",
141
+ )
142
+ with scheduler.lock:
143
+ user_id = time.time()
144
+ with JSON_DATASET_PATH.open("a") as f:
145
+ json.dump({
146
+ "user_id": user_id,
147
+ "answer": {i: answer[i] for i in range(len(answer))}
148
+ }, f)
149
 
150
  def add_answer(dropdown1,dropdown2,dropdown3,dropdown4, answers):
151
  rank = [dropdown1,dropdown2,dropdown3,dropdown4]
 
174
  outputs={target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise, img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16},
175
  ).then(
176
  update_dropdowns,
 
177
  outputs={dropdown1, dropdown2, dropdown3, dropdown4}
178
  )
179
 
180
  finish_button.click(
181
  add_answer, inputs=[dropdown1, dropdown2, dropdown3, dropdown4, answers],outputs=answers
182
  ).then(
183
+ save_results, inputs=answers
184
  ).then(
185
  redirect, js="window.location = 'https://marcoparola.github.io/saliency-evaluation-app/end'")
186
 
src/utils.py CHANGED
@@ -32,37 +32,9 @@ def load_words(idx):
32
  words = [f"word_{idx}_{i}" for i in range(20)]
33
  return words
34
 
35
- # Function to save results and increment global variable
36
- def save_results(experiment_dir, answers):
37
- user_id = time.time()
38
- folder = os.path.join(config['results']['save_dir'], experiment_dir, str(user_id))
39
- if not os.path.exists(folder):
40
- os.makedirs(folder)
41
 
42
- # answers is a list of lists
43
- for idx, answer in enumerate(answers):
44
- filename = os.path.join(folder, f"results_{idx}.txt")
45
- with open(filename, 'w') as f:
46
- f.write("\n".join(answer))
47
 
48
- # Upload the file to Hugging Face Hub
49
- api = HfApi()
50
- token = os.getenv("HUGGINGFACE_TOKEN")
51
- #token = HfFolder.get_token()
52
-
53
- if not token:
54
- print("Token not found. Please login to Hugging Face.")
55
- return
56
-
57
- try:
58
- api.upload_file(
59
- path_or_fileobj=filename,
60
- path_in_repo=filename,
61
- repo_id=config["repo_id"],
62
- repo_type="space",
63
- token=token,
64
- commit_message="Add results.txt"
65
- )
66
- print(f"File {filename} uploaded successfully to {config['repo_id']}.")
67
- except Exception as e:
68
- print(f"Failed to upload file: {e}")
 
32
  words = [f"word_{idx}_{i}" for i in range(20)]
33
  return words
34
 
 
 
 
 
 
 
35
 
 
 
 
 
 
36
 
37
+
38
+
39
+
40
+