Commit
·
2826168
1
Parent(s):
7ac8e11
perchè un'altra televisione è impossibile.. viva lammerda
Browse files- app.py +3 -9
- config/config.yaml +1 -1
- src/utils.py +10 -23
app.py
CHANGED
@@ -13,13 +13,12 @@ def main():
|
|
13 |
options = ['1', '2', '3', '4']
|
14 |
class_names = config['dataset'][config['dataset']['name']]['class_names']
|
15 |
data_dir = os.path.join(config['dataset']['path'], config['dataset']['name'])
|
16 |
-
id_generator = UserID()
|
17 |
|
18 |
with gr.Blocks(theme=gr.themes.Glass(), css=css) as demo:
|
19 |
# Main App Components
|
20 |
title = gr.Markdown("# Saliency evaluation - experiment 1")
|
21 |
user_state = gr.State(0)
|
22 |
-
user_id = gr.State(
|
23 |
answers = gr.State([])
|
24 |
|
25 |
with gr.Row():
|
@@ -122,17 +121,13 @@ def main():
|
|
122 |
dropdown3 = gr.Dropdown(choices=options, label="sidu")
|
123 |
dropdown4 = gr.Dropdown(choices=options, label="rise")
|
124 |
return dropdown1, dropdown2, dropdown3, dropdown4
|
125 |
-
|
126 |
-
def init(request: gr.Request):
|
127 |
-
user_id.value = id_generator.increment()
|
128 |
-
return user_id
|
129 |
|
130 |
def redirect():
|
131 |
pass
|
132 |
|
133 |
def register_answers(answers):
|
134 |
experiment_dir = config['results']['exp1_dir']
|
135 |
-
save_results(
|
136 |
|
137 |
def add_answer(dropdown1,dropdown2,dropdown3,dropdown4, answers):
|
138 |
rank = [dropdown1,dropdown2,dropdown3,dropdown4]
|
@@ -172,8 +167,7 @@ def main():
|
|
172 |
).then(
|
173 |
redirect, js="window.location = 'https://marcoparola.github.io/saliency-evaluation-app/end'")
|
174 |
|
175 |
-
demo.load(
|
176 |
-
|
177 |
demo.launch()
|
178 |
|
179 |
if __name__ == "__main__":
|
|
|
13 |
options = ['1', '2', '3', '4']
|
14 |
class_names = config['dataset'][config['dataset']['name']]['class_names']
|
15 |
data_dir = os.path.join(config['dataset']['path'], config['dataset']['name'])
|
|
|
16 |
|
17 |
with gr.Blocks(theme=gr.themes.Glass(), css=css) as demo:
|
18 |
# Main App Components
|
19 |
title = gr.Markdown("# Saliency evaluation - experiment 1")
|
20 |
user_state = gr.State(0)
|
21 |
+
#user_id = gr.State(load_global_variable())
|
22 |
answers = gr.State([])
|
23 |
|
24 |
with gr.Row():
|
|
|
121 |
dropdown3 = gr.Dropdown(choices=options, label="sidu")
|
122 |
dropdown4 = gr.Dropdown(choices=options, label="rise")
|
123 |
return dropdown1, dropdown2, dropdown3, dropdown4
|
|
|
|
|
|
|
|
|
124 |
|
125 |
def redirect():
|
126 |
pass
|
127 |
|
128 |
def register_answers(answers):
|
129 |
experiment_dir = config['results']['exp1_dir']
|
130 |
+
save_results( experiment_dir, answers)
|
131 |
|
132 |
def add_answer(dropdown1,dropdown2,dropdown3,dropdown4, answers):
|
133 |
rank = [dropdown1,dropdown2,dropdown3,dropdown4]
|
|
|
167 |
).then(
|
168 |
redirect, js="window.location = 'https://marcoparola.github.io/saliency-evaluation-app/end'")
|
169 |
|
170 |
+
demo.load()
|
|
|
171 |
demo.launch()
|
172 |
|
173 |
if __name__ == "__main__":
|
config/config.yaml
CHANGED
@@ -15,7 +15,7 @@ dataset:
|
|
15 |
name: intel_image
|
16 |
path: data
|
17 |
intel_image:
|
18 |
-
n_classes:
|
19 |
class_names: ['BUILDING', 'FOREST', 'GLACIER', 'MOUNTAIN', 'SEA', 'STREET']
|
20 |
imagenette:
|
21 |
n_classes: 10
|
|
|
15 |
name: intel_image
|
16 |
path: data
|
17 |
intel_image:
|
18 |
+
n_classes: 6
|
19 |
class_names: ['BUILDING', 'FOREST', 'GLACIER', 'MOUNTAIN', 'SEA', 'STREET']
|
20 |
imagenette:
|
21 |
n_classes: 10
|
src/utils.py
CHANGED
@@ -3,6 +3,7 @@ import pandas as pd
|
|
3 |
from huggingface_hub import HfApi, HfFolder
|
4 |
import yaml
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
config = yaml.safe_load(open("./config/config.yaml"))
|
8 |
|
@@ -26,42 +27,28 @@ def load_example_images(class_idx, data_dir, max_images=16):
|
|
26 |
images = [os.path.join(path, images[id]) for id in ids]
|
27 |
return images
|
28 |
|
29 |
-
|
30 |
# Function to load words based on global variable
|
31 |
def load_words(idx):
|
32 |
words = [f"word_{idx}_{i}" for i in range(20)]
|
33 |
return words
|
34 |
|
35 |
# Function to save results and increment global variable
|
36 |
-
def save_results(
|
37 |
-
|
38 |
-
|
39 |
-
# convert answers (list of list) to a pandas dataframe
|
40 |
-
df = pd.DataFrame(answers, columns=config['saliency_methods'])
|
41 |
if not os.path.exists(folder):
|
42 |
os.makedirs(folder)
|
43 |
-
df.to_csv(os.path.join(folder, 'results.csv'), index=False)
|
44 |
-
print(f"Results saved to {folder}", df)
|
45 |
-
|
46 |
-
'''
|
47 |
-
filename = "results.txt"
|
48 |
-
print('ooooooo', global_counter)
|
49 |
-
print(dropdowns)
|
50 |
-
str_dropdowns = str(dropdowns)
|
51 |
-
# remove the curly braces
|
52 |
-
dropdowns = str_dropdowns[1:-1]
|
53 |
-
# split by comma and select the number contained in the string
|
54 |
-
dropdowns = [r.split(":")[1].strip().replace("'", "") for r in dropdowns.split(",")]
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
f.
|
59 |
-
|
|
|
60 |
|
61 |
# Upload the file to Hugging Face Hub
|
62 |
api = HfApi()
|
63 |
token = os.getenv("HUGGINGFACE_TOKEN")
|
64 |
-
#
|
65 |
|
66 |
if not token:
|
67 |
print("Token not found. Please login to Hugging Face.")
|
|
|
3 |
from huggingface_hub import HfApi, HfFolder
|
4 |
import yaml
|
5 |
import numpy as np
|
6 |
+
import time
|
7 |
|
8 |
config = yaml.safe_load(open("./config/config.yaml"))
|
9 |
|
|
|
27 |
images = [os.path.join(path, images[id]) for id in ids]
|
28 |
return images
|
29 |
|
|
|
30 |
# Function to load words based on global variable
|
31 |
def load_words(idx):
|
32 |
words = [f"word_{idx}_{i}" for i in range(20)]
|
33 |
return words
|
34 |
|
35 |
# Function to save results and increment global variable
|
36 |
+
def save_results(experiment_dir, answers):
|
37 |
+
user_id = time.time()
|
38 |
+
folder = os.path.join(config['results']['save_dir'], experiment_dir, str(user_id))
|
|
|
|
|
39 |
if not os.path.exists(folder):
|
40 |
os.makedirs(folder)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# answers is a list of lists
|
43 |
+
for idx, answer in enumerate(answers):
|
44 |
+
filename = os.path.join(folder, f"results_{idx}.txt")
|
45 |
+
with open(filename, 'w') as f:
|
46 |
+
f.write("\n".join(answer))
|
47 |
|
48 |
# Upload the file to Hugging Face Hub
|
49 |
api = HfApi()
|
50 |
token = os.getenv("HUGGINGFACE_TOKEN")
|
51 |
+
#token = HfFolder.get_token()
|
52 |
|
53 |
if not token:
|
54 |
print("Token not found. Please login to Hugging Face.")
|