Spaces:
Running
Running
File size: 13,624 Bytes
5793f6d 2c80634 8092894 da0e039 673055c da0e039 e0df362 5793f6d 560fd79 8092894 2c80634 169c4de ce91e2d 169c4de 5793f6d 2c80634 da0e039 8092894 2c80634 5793f6d 2c80634 92e3db3 83892e6 2c80634 560fd79 2c80634 560fd79 2c80634 8092894 560fd79 83892e6 560fd79 8092894 e1df11f 560fd79 2c80634 560fd79 8092894 560fd79 8092894 560fd79 2c80634 560fd79 2c80634 5793f6d 8092894 560fd79 8092894 560fd79 2c80634 8092894 560fd79 83892e6 560fd79 e1df11f 560fd79 2c80634 da0e039 560fd79 da0e039 92e3db3 560fd79 83892e6 560fd79 92e3db3 da0e039 b380276 169c4de da0e039 169c4de 560fd79 169c4de ce91e2d 169c4de 83892e6 e0df362 83892e6 169c4de 83892e6 169c4de 92e3db3 d9deb23 92e3db3 2c80634 d9deb23 2c80634 92e3db3 8092894 560fd79 2c80634 560fd79 e1df11f 560fd79 2c80634 560fd79 2c80634 560fd79 2c80634 560fd79 8092894 2c80634 560fd79 92e3db3 da0e039 92e3db3 8092894 2826168 2c80634 5793f6d 2c80634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import gradio as gr
import yaml
import random
import os
import json
import time
from pathlib import Path
from huggingface_hub import CommitScheduler, HfApi
from src.utils import load_words, load_image_and_saliency, load_example_images, load_csv_concepts
from src.style import css
from src.user import UserID
from datetime import datetime
from pathlib import Path
from uuid import uuid4
import json
from huggingface_hub import CommitScheduler
def main():
config = yaml.safe_load(open("config/config.yaml"))
words = ['grad-cam', 'lime', 'sidu', 'rise']
options = ['-', '1', '2', '3', '4']
class_names = config['dataset'][config['dataset']['name']]['class_names']
data_dir = os.path.join(config['dataset']['path'], config['dataset']['name'])
with gr.Blocks(theme=gr.themes.Glass(), css=css) as demo:
# Main App Components
title = gr.Markdown("# Saliency evaluation - experiment 1")
user_state = gr.State(0)
answers = gr.State([])
start_time = gr.State(time.time())
concepts = load_csv_concepts(data_dir)
gr.Markdown("### Image examples")
with gr.Row():
count = user_state if isinstance(user_state, int) else user_state.value
images = load_example_images(count, data_dir)
img1 = gr.Image(images[0])
img2 = gr.Image(images[1])
img3 = gr.Image(images[2])
img4 = gr.Image(images[3])
img5 = gr.Image(images[4])
img6 = gr.Image(images[5])
img7 = gr.Image(images[6])
img8 = gr.Image(images[7])
img9 = gr.Image(images[8])
img10 = gr.Image(images[9])
img11 = gr.Image(images[10])
img12 = gr.Image(images[11])
img13 = gr.Image(images[12])
img14 = gr.Image(images[13])
img15 = gr.Image(images[14])
img16 = gr.Image(images[15])
count = user_state if isinstance(user_state, int) else user_state.value
row = concepts.iloc[count]
question = gr.Markdown(f"### Sort the following saliency maps according to which of them better explains the class {class_names[count]}.", visible=False)
with gr.Row():
target_img_label = gr.Markdown(f"Target image: **{class_names[user_state.value]}**")
gr.Markdown("Grad-cam")
gr.Markdown("Lime")
gr.Markdown("Sidu")
gr.Markdown("Rise")
with gr.Row():
count = user_state if isinstance(user_state, int) else user_state.value
images = load_image_and_saliency(count, data_dir)
target_img = gr.Image(images[0], elem_classes="main-image delay", visible=False)
saliency_gradcam = gr.Image(images[1], elem_classes="main-image", visible=False)
saliency_lime = gr.Image(images[2], elem_classes="main-image", visible=False)
saliency_sidu = gr.Image(images[4], elem_classes="main-image", visible=False)
saliency_rise = gr.Image(images[3], elem_classes="main-image", visible=False)
with gr.Row():
dropdown1 = gr.Dropdown(choices=options, label="grad-cam", visible=False)
dropdown2 = gr.Dropdown(choices=options, label="lime", visible=False)
dropdown3 = gr.Dropdown(choices=options, label="sidu", visible=False)
dropdown4 = gr.Dropdown(choices=options, label="rise", visible=False)
continue_button = gr.Button("Continue")
submit_button = gr.Button("Submit", visible=False)
finish_button = gr.Button("Finish", visible=False)
def update_images(user_state):
count = user_state if isinstance(user_state, int) else user_state.value
if count < config['dataset'][config['dataset']['name']]['n_classes']:
images = load_image_and_saliency(count, data_dir)
# image examples
images = load_example_images(count, data_dir)
img1 = gr.Image(images[0], visible=True)
img2 = gr.Image(images[1], visible=True)
img3 = gr.Image(images[2], visible=True)
img4 = gr.Image(images[3], visible=True)
img5 = gr.Image(images[4], visible=True)
img6 = gr.Image(images[5], visible=True)
img7 = gr.Image(images[6], visible=True)
img8 = gr.Image(images[7], visible=True)
img9 = gr.Image(images[8], visible=True)
img10 = gr.Image(images[9], visible=True)
img11 = gr.Image(images[10], visible=True)
img12 = gr.Image(images[11], visible=True)
img13 = gr.Image(images[12], visible=True)
img14 = gr.Image(images[13], visible=True)
img15 = gr.Image(images[14], visible=True)
img16 = gr.Image(images[15], visible=True)
return img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16
else:
return img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16
def update_saliencies(dropdown1, dropdown2, dropdown3, dropdown4, user_state):
count = user_state if isinstance(user_state, int) else user_state.value
if count < config['dataset'][config['dataset']['name']]['n_classes']:
images = load_image_and_saliency(count, data_dir)
target_img = gr.Image(images[0], elem_classes="main-image", visible=True)
saliency_gradcam = gr.Image(images[1], elem_classes="main-image", visible=True)
saliency_lime = gr.Image(images[2], elem_classes="main-image", visible=True)
saliency_sidu = gr.Image(images[4], elem_classes="main-image", visible=True)
saliency_rise = gr.Image(images[3], elem_classes="main-image", visible=True)
return target_img, saliency_gradcam, saliency_lime, saliency_rise, saliency_sidu
else:
return target_img, saliency_gradcam, saliency_lime, saliency_rise, saliency_sidu
def update_state(state):
count = state if isinstance(state, int) else state.value
return gr.State(count + 1)
def update_img_label(state):
count = state if isinstance(state, int) else state.value
return f" Target image: **{class_names[count]}**"
def update_buttons():
submit_button = gr.Button("Submit", visible=False)
continue_button = gr.Button("Continue", visible=True)
return continue_button, submit_button
def show_view(state):
count = state if isinstance(state, int) else state.value
max_images = config['dataset'][config['dataset']['name']]['n_classes']
finish_button = gr.Button("Finish", visible=(count == max_images-1))
submit_button = gr.Button("Submit", visible=(count != max_images-1))
continue_button = gr.Button("Continue", visible=False)
return continue_button, submit_button, finish_button
def hide_view():
target_img = gr.Image(images[0], elem_classes="main-image", visible=False)
saliency_gradcam = gr.Image(images[1], elem_classes="main-image", visible=False)
saliency_lime = gr.Image(images[2], elem_classes="main-image", visible=False)
saliency_sidu = gr.Image(images[4], elem_classes="main-image", visible=False)
saliency_rise = gr.Image(images[3], elem_classes="main-image", visible=False)
question = gr.Markdown(f"### Sort the following saliency maps according to which of them better explains the class {class_names[count]}.", visible=False)
dropdown1 = gr.Dropdown(choices=options, label="grad-cam", visible=False)
dropdown2 = gr.Dropdown(choices=options, label="lime", visible=False)
dropdown3 = gr.Dropdown(choices=options, label="sidu", visible=False)
dropdown4 = gr.Dropdown(choices=options, label="rise", visible=False)
return question, target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise, dropdown1, dropdown2, dropdown3, dropdown4
def update_dropdowns():
dp1 = gr.Dropdown(choices=options, value=options[0], label="grad-cam", visible=True)
dp2 = gr.Dropdown(choices=options, value=options[0], label="lime", visible=True)
dp3 = gr.Dropdown(choices=options, value=options[0], label="sidu", visible=True)
dp4 = gr.Dropdown(choices=options, value=options[0], label="rise", visible=True)
return dp1, dp2, dp3, dp4
def update_questions(state):
concepts = load_csv_concepts(data_dir)
count = state if isinstance(state, int) else state.value
row = concepts.iloc[count]
return gr.Markdown(f"### Sort the following saliency maps according to which of them better explains the class {class_names[count]}.", visible=True)
def redirect():
pass
def save_results(answers):
api_token = os.getenv("HUGGINGFACE_TOKEN")
if not api_token:
raise ValueError("Hugging Face API token not found. Please set the HF_API_TOKEN environment variable.")
json_file_results = config['results']['exp1_dir'] # 'exp1'
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
scheduler = CommitScheduler(
repo_id=f"results_{config['dataset']['name']}_{config['results']['exp1_dir']}", # The repo id
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data",
token=api_token # Pass the token here
)
duration = time.time() - start_time.value
info_to_push = {
"user_id": time.time(),
"answer": {i: answer for i, answer in enumerate(answers)},
"duration": duration
}
# Save the results into huggingface hub
with scheduler.lock:
with JSON_DATASET_PATH.open("a") as f:
json.dump({
"user_id": info_to_push["user_id"],
"answers": info_to_push["answer"],
"duration": info_to_push["duration"],
"datetime": datetime.now().isoformat()
}, f)
f.write("\n")
scheduler.push_to_hub()
def check_answer(dropdown1, dropdown2, dropdown3, dropdown4):
if '-' in [dropdown1, dropdown2, dropdown3, dropdown4]:
raise gr.Error('Please select a value for each saliency method')
# check if all values are different 1,2,3,4
if len(set([dropdown1, dropdown2, dropdown3, dropdown4])) < 4:
print(set([dropdown1, dropdown2, dropdown3, dropdown4]))
raise gr.Error('Please select different values for each saliency method')
def add_answer(dropdown1,dropdown2,dropdown3,dropdown4, answers):
rank = [dropdown1,dropdown2,dropdown3,dropdown4]
answers.append(rank)
return answers
submit_button.click(
check_answer,
inputs=[dropdown1, dropdown2, dropdown3, dropdown4]
).success(
update_state,
inputs=user_state,
outputs=user_state
).then(
add_answer,
inputs=[dropdown1, dropdown2, dropdown3, dropdown4, answers],
outputs=answers
).then(
update_img_label,
inputs=user_state,
outputs=target_img_label
).then(
update_images,
inputs=user_state,
outputs=[img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16]
).then(
update_buttons,
outputs={continue_button, submit_button}
).then(
hide_view,
outputs={question, target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise, dropdown1, dropdown2, dropdown3, dropdown4}
)
continue_button.click(
show_view,
inputs=user_state,
outputs={continue_button, submit_button, finish_button}
).then(
update_img_label,
inputs=user_state,
outputs=target_img_label
).then(
update_saliencies,
inputs=[dropdown1, dropdown2, dropdown3, dropdown4, user_state],
outputs={target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise},
).then(
update_questions,
inputs=user_state,
outputs=question
).then(
update_dropdowns,
outputs={dropdown1, dropdown2, dropdown3, dropdown4}
)
finish_button.click(
add_answer, inputs=[dropdown1, dropdown2, dropdown3, dropdown4, answers],outputs=answers
).then(
save_results, inputs=answers
).then(
redirect, js="window.location = 'https://marcoparola.github.io/saliency-evaluation-app/end'")
demo.load()
demo.launch()
if __name__ == "__main__":
main()
|