File size: 13,624 Bytes
5793f6d
 
2c80634
8092894
da0e039
673055c
da0e039
e0df362
5793f6d
560fd79
8092894
 
2c80634
169c4de
 
 
 
ce91e2d
169c4de
5793f6d
 
2c80634
da0e039
8092894
 
2c80634
5793f6d
2c80634
 
 
92e3db3
83892e6
2c80634
560fd79
2c80634
560fd79
2c80634
8092894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560fd79
83892e6
 
 
 
560fd79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8092894
e1df11f
560fd79
 
 
 
 
 
 
 
2c80634
 
560fd79
8092894
 
 
560fd79
8092894
 
560fd79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c80634
560fd79
 
 
 
 
 
 
 
 
 
 
 
 
 
2c80634
 
 
 
5793f6d
8092894
 
560fd79
 
 
 
 
 
8092894
560fd79
2c80634
8092894
 
 
560fd79
 
 
 
 
 
 
 
 
 
83892e6
560fd79
 
 
 
e1df11f
560fd79
2c80634
da0e039
560fd79
 
 
 
da0e039
92e3db3
560fd79
 
 
 
83892e6
560fd79
92e3db3
 
 
da0e039
b380276
 
 
 
169c4de
da0e039
 
169c4de
 
560fd79
169c4de
 
ce91e2d
 
169c4de
83892e6
 
e0df362
 
 
83892e6
 
169c4de
 
 
 
 
 
 
 
83892e6
169c4de
 
 
 
92e3db3
d9deb23
 
 
 
 
 
 
 
92e3db3
 
 
 
 
2c80634
d9deb23
 
 
2c80634
 
 
92e3db3
 
 
 
8092894
 
 
 
560fd79
 
 
 
2c80634
 
560fd79
 
 
e1df11f
560fd79
 
 
 
 
 
 
 
2c80634
560fd79
2c80634
560fd79
2c80634
560fd79
 
 
 
 
8092894
 
 
2c80634
560fd79
 
92e3db3
 
 
da0e039
92e3db3
 
8092894
2826168
2c80634
5793f6d
 
2c80634
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import gradio as gr
import yaml
import random
import os
import json
import time
from pathlib import Path
from huggingface_hub import CommitScheduler, HfApi

from src.utils import load_words, load_image_and_saliency, load_example_images, load_csv_concepts
from src.style import css
from src.user import UserID

from datetime import datetime
from pathlib import Path
from uuid import uuid4
import json
from huggingface_hub import CommitScheduler

def main():
    config = yaml.safe_load(open("config/config.yaml"))
    words = ['grad-cam', 'lime', 'sidu', 'rise']
    options = ['-', '1', '2', '3', '4']
    class_names = config['dataset'][config['dataset']['name']]['class_names']
    data_dir = os.path.join(config['dataset']['path'], config['dataset']['name'])

    with gr.Blocks(theme=gr.themes.Glass(), css=css) as demo:
        # Main App Components
        title = gr.Markdown("# Saliency evaluation - experiment 1")
        user_state = gr.State(0)
        answers = gr.State([])
        start_time = gr.State(time.time())

        concepts = load_csv_concepts(data_dir)

        gr.Markdown("### Image examples")
        with gr.Row():
            count = user_state if isinstance(user_state, int) else user_state.value
            images = load_example_images(count, data_dir)
            img1 = gr.Image(images[0])
            img2 = gr.Image(images[1])
            img3 = gr.Image(images[2])
            img4 = gr.Image(images[3])
            img5 = gr.Image(images[4])
            img6 = gr.Image(images[5])
            img7 = gr.Image(images[6])
            img8 = gr.Image(images[7])
            img9 = gr.Image(images[8])
            img10 = gr.Image(images[9])
            img11 = gr.Image(images[10])
            img12 = gr.Image(images[11])
            img13 = gr.Image(images[12])
            img14 = gr.Image(images[13])
            img15 = gr.Image(images[14])
            img16 = gr.Image(images[15])

        count = user_state if isinstance(user_state, int) else user_state.value
        row = concepts.iloc[count]
        question = gr.Markdown(f"### Sort the following saliency maps according to which of them better explains the class {class_names[count]}.", visible=False)

        with gr.Row():
            target_img_label = gr.Markdown(f"Target image: **{class_names[user_state.value]}**")
            gr.Markdown("Grad-cam")
            gr.Markdown("Lime")
            gr.Markdown("Sidu")
            gr.Markdown("Rise")

        with gr.Row():
            count = user_state if isinstance(user_state, int) else user_state.value
            images = load_image_and_saliency(count, data_dir)
            target_img = gr.Image(images[0], elem_classes="main-image delay", visible=False)
            saliency_gradcam = gr.Image(images[1], elem_classes="main-image", visible=False)
            saliency_lime = gr.Image(images[2], elem_classes="main-image", visible=False)
            saliency_sidu = gr.Image(images[4], elem_classes="main-image", visible=False)
            saliency_rise = gr.Image(images[3], elem_classes="main-image", visible=False)
            
                
        with gr.Row():
            dropdown1 = gr.Dropdown(choices=options, label="grad-cam", visible=False)
            dropdown2 = gr.Dropdown(choices=options, label="lime", visible=False)
            dropdown3 = gr.Dropdown(choices=options, label="sidu", visible=False)
            dropdown4 = gr.Dropdown(choices=options, label="rise", visible=False)
        
        continue_button = gr.Button("Continue")
        submit_button = gr.Button("Submit", visible=False)
        finish_button = gr.Button("Finish", visible=False)

        def update_images(user_state):
            count = user_state if isinstance(user_state, int) else user_state.value
            if count < config['dataset'][config['dataset']['name']]['n_classes']:
                images = load_image_and_saliency(count, data_dir)
                
                # image examples
                images = load_example_images(count, data_dir)
                img1 = gr.Image(images[0], visible=True)
                img2 = gr.Image(images[1], visible=True)
                img3 = gr.Image(images[2], visible=True)
                img4 = gr.Image(images[3], visible=True)
                img5 = gr.Image(images[4], visible=True)
                img6 = gr.Image(images[5], visible=True)
                img7 = gr.Image(images[6], visible=True)
                img8 = gr.Image(images[7], visible=True)
                img9 = gr.Image(images[8], visible=True)
                img10 = gr.Image(images[9], visible=True)
                img11 = gr.Image(images[10], visible=True)
                img12 = gr.Image(images[11], visible=True)
                img13 = gr.Image(images[12], visible=True)
                img14 = gr.Image(images[13], visible=True)
                img15 = gr.Image(images[14], visible=True)
                img16 = gr.Image(images[15], visible=True)
                return img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16
            else:
                return img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16

        def update_saliencies(dropdown1, dropdown2, dropdown3, dropdown4, user_state):
            count = user_state if isinstance(user_state, int) else user_state.value
            if count < config['dataset'][config['dataset']['name']]['n_classes']:
                images = load_image_and_saliency(count, data_dir)
                target_img = gr.Image(images[0], elem_classes="main-image", visible=True)
                saliency_gradcam = gr.Image(images[1], elem_classes="main-image", visible=True)
                saliency_lime = gr.Image(images[2], elem_classes="main-image", visible=True)
                saliency_sidu = gr.Image(images[4], elem_classes="main-image", visible=True)
                saliency_rise = gr.Image(images[3], elem_classes="main-image", visible=True)
                return target_img, saliency_gradcam, saliency_lime, saliency_rise, saliency_sidu
            else:
                return target_img, saliency_gradcam, saliency_lime, saliency_rise, saliency_sidu

        def update_state(state):
            count = state if isinstance(state, int) else state.value
            return gr.State(count + 1)

        def update_img_label(state):
            count = state if isinstance(state, int) else state.value
            return f" Target image: **{class_names[count]}**"

        def update_buttons():
            submit_button = gr.Button("Submit", visible=False)
            continue_button = gr.Button("Continue", visible=True)
            return continue_button, submit_button

        def show_view(state):
            count = state if isinstance(state, int) else state.value
            max_images = config['dataset'][config['dataset']['name']]['n_classes']
            finish_button = gr.Button("Finish", visible=(count == max_images-1))
            submit_button = gr.Button("Submit", visible=(count != max_images-1))
            continue_button = gr.Button("Continue", visible=False)
            return continue_button, submit_button, finish_button


        def hide_view():
            target_img = gr.Image(images[0], elem_classes="main-image", visible=False)
            saliency_gradcam = gr.Image(images[1], elem_classes="main-image", visible=False)
            saliency_lime = gr.Image(images[2], elem_classes="main-image", visible=False)
            saliency_sidu = gr.Image(images[4], elem_classes="main-image", visible=False)
            saliency_rise = gr.Image(images[3], elem_classes="main-image", visible=False)
            question = gr.Markdown(f"### Sort the following saliency maps according to which of them better explains the class {class_names[count]}.", visible=False)
            dropdown1 = gr.Dropdown(choices=options, label="grad-cam", visible=False)
            dropdown2 = gr.Dropdown(choices=options, label="lime", visible=False)
            dropdown3 = gr.Dropdown(choices=options, label="sidu", visible=False)
            dropdown4 = gr.Dropdown(choices=options, label="rise", visible=False)
            return question, target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise, dropdown1, dropdown2, dropdown3, dropdown4


        def update_dropdowns():
            dp1 = gr.Dropdown(choices=options, value=options[0], label="grad-cam", visible=True)
            dp2 = gr.Dropdown(choices=options, value=options[0], label="lime", visible=True)
            dp3 = gr.Dropdown(choices=options, value=options[0], label="sidu", visible=True)
            dp4 = gr.Dropdown(choices=options, value=options[0], label="rise", visible=True)
            return dp1, dp2, dp3, dp4

        def update_questions(state):
            concepts = load_csv_concepts(data_dir)
            count = state if isinstance(state, int) else state.value
            row = concepts.iloc[count]
            return gr.Markdown(f"### Sort the following saliency maps according to which of them better explains the class {class_names[count]}.", visible=True)

        def redirect():
            pass

        def save_results(answers):
            api_token = os.getenv("HUGGINGFACE_TOKEN")
            if not api_token:
                raise ValueError("Hugging Face API token not found. Please set the HF_API_TOKEN environment variable.")
            
            json_file_results = config['results']['exp1_dir'] # 'exp1' 
            JSON_DATASET_DIR = Path("json_dataset")
            JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
            JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
            scheduler = CommitScheduler(
                repo_id=f"results_{config['dataset']['name']}_{config['results']['exp1_dir']}",  # The repo id
                repo_type="dataset",
                folder_path=JSON_DATASET_DIR,
                path_in_repo="data",
                token=api_token  # Pass the token here
            )

            duration = time.time() - start_time.value
            
            info_to_push = {
                "user_id": time.time(), 
                "answer": {i: answer for i, answer in enumerate(answers)},
                "duration": duration
            }

            # Save the results into huggingface hub
            with scheduler.lock:
                with JSON_DATASET_PATH.open("a") as f:
                    json.dump({
                        "user_id": info_to_push["user_id"],
                        "answers": info_to_push["answer"],
                        "duration": info_to_push["duration"],
                        "datetime": datetime.now().isoformat()
                    }, f)
                    f.write("\n")
            scheduler.push_to_hub()
 
        def check_answer(dropdown1, dropdown2, dropdown3, dropdown4):
            if '-' in [dropdown1, dropdown2, dropdown3, dropdown4]:
                raise gr.Error('Please select a value for each saliency method')
            # check if all values are different 1,2,3,4
            if len(set([dropdown1, dropdown2, dropdown3, dropdown4])) < 4:
                print(set([dropdown1, dropdown2, dropdown3, dropdown4]))
                raise gr.Error('Please select different values for each saliency method')

        def add_answer(dropdown1,dropdown2,dropdown3,dropdown4, answers):
            rank = [dropdown1,dropdown2,dropdown3,dropdown4]
            answers.append(rank)
            return answers

        submit_button.click(
            check_answer, 
            inputs=[dropdown1, dropdown2, dropdown3, dropdown4]
        ).success(
            update_state,
            inputs=user_state,
            outputs=user_state
        ).then(
            add_answer,
            inputs=[dropdown1, dropdown2, dropdown3, dropdown4, answers],
            outputs=answers
        ).then(
            update_img_label,
            inputs=user_state,
            outputs=target_img_label
        ).then(
            update_images,
            inputs=user_state,
            outputs=[img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16]    
        ).then(
            update_buttons,
            outputs={continue_button, submit_button}
        ).then(
            hide_view,
            outputs={question, target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise, dropdown1, dropdown2, dropdown3, dropdown4}
        )
       
        continue_button.click(
            show_view,
            inputs=user_state,
            outputs={continue_button, submit_button, finish_button}
        ).then(
            update_img_label,
            inputs=user_state,
            outputs=target_img_label
        ).then(
            update_saliencies, 
            inputs=[dropdown1, dropdown2, dropdown3, dropdown4, user_state], 
            outputs={target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise},
        ).then(
            update_questions,
            inputs=user_state,
            outputs=question
        ).then(
            update_dropdowns,
            outputs={dropdown1, dropdown2, dropdown3, dropdown4}
        )


        finish_button.click(
            add_answer, inputs=[dropdown1, dropdown2, dropdown3, dropdown4, answers],outputs=answers
        ).then(
            save_results, inputs=answers
        ).then(
            redirect, js="window.location = 'https://marcoparola.github.io/saliency-evaluation-app/end'")

        demo.load()
    demo.launch()

if __name__ == "__main__":
    main()