Spaces:
Running
Running
Commit
·
2c80634
1
Parent(s):
21088a7
develop a preliminary version of experiment1
Browse files- .gitignore +24 -0
- app.py +175 -30
- src/__pycache__/utils.cpython-310.pyc +0 -0
- src/style.py +20 -0
- src/utils.py +30 -7
.gitignore
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/env
|
2 |
+
__pycache__/
|
3 |
+
|
4 |
+
/logs
|
5 |
+
/outputs
|
6 |
+
/.hydra
|
7 |
+
/checkpoints
|
8 |
+
/wandb
|
9 |
+
/models
|
10 |
+
/share
|
11 |
+
/bin
|
12 |
+
/lib
|
13 |
+
/lib64
|
14 |
+
/include
|
15 |
+
pyvenv.cfg
|
16 |
+
requirements.txt
|
17 |
+
|
18 |
+
*.log
|
19 |
+
*.pth
|
20 |
+
*.png
|
21 |
+
|
22 |
+
|
23 |
+
/lightning_logs
|
24 |
+
__pycache__/
|
app.py
CHANGED
@@ -1,46 +1,191 @@
|
|
1 |
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
import csv
|
4 |
-
import os
|
5 |
-
from huggingface_hub import HfApi, HfFolder
|
6 |
import yaml
|
7 |
-
from src.utils import
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
def main():
|
19 |
-
|
20 |
config = yaml.safe_load(open("config/config.yaml"))
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
with gr.Blocks(theme=gr.themes.Glass(), css=css) as demo:
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
submit_button = gr.Button("Submit")
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
-
main()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
import yaml
|
3 |
+
from src.utils import load_words, save_results, load_global_variable, load_saliencies
|
4 |
+
from src.style import css
|
5 |
+
import random
|
6 |
|
7 |
+
random_images = [
|
8 |
+
"https://picsum.photos/200",
|
9 |
+
"https://picsum.photos/201",
|
10 |
+
"https://picsum.photos/202",
|
11 |
+
"https://picsum.photos/203",
|
12 |
+
"https://picsum.photos/204",
|
13 |
+
"https://picsum.photos/205",
|
14 |
+
"https://picsum.photos/206",
|
15 |
+
"https://picsum.photos/207",
|
16 |
+
"https://picsum.photos/208",
|
17 |
+
"https://picsum.photos/209",
|
18 |
+
"https://picsum.photos/210",
|
19 |
+
"https://picsum.photos/211",
|
20 |
+
"https://picsum.photos/212",
|
21 |
+
"https://picsum.photos/213",
|
22 |
+
"https://picsum.photos/214",
|
23 |
+
]
|
24 |
|
25 |
|
26 |
|
27 |
+
def update_img_count(state):
|
28 |
+
count = state
|
29 |
+
print('oooooooo', count)
|
30 |
+
return gr.State(count + 1)
|
31 |
+
|
32 |
def main():
|
|
|
33 |
config = yaml.safe_load(open("config/config.yaml"))
|
34 |
+
|
35 |
+
global_var = load_global_variable()
|
36 |
+
|
37 |
+
#images = load_images(global_var)
|
38 |
+
#saliency = load_saliencies(global_var)
|
39 |
+
words = ['grad-cam', 'lime', 'sidu', 'rise']
|
40 |
+
options = ['1', '2', '3', '4']
|
41 |
+
|
42 |
with gr.Blocks(theme=gr.themes.Glass(), css=css) as demo:
|
43 |
+
# Main App Components
|
44 |
+
title = gr.Markdown("# Saliency evaluation - experiment 1")
|
45 |
+
user_state = gr.State(0)
|
46 |
+
print('user_state', user_state)
|
47 |
+
#user_counter = gr.Textbox(str(global_var), visible=False)
|
48 |
+
#img_counter = gr.Textbox(str(0), visible=False)
|
49 |
+
|
50 |
+
with gr.Row():
|
51 |
+
gr.Markdown("### Target image")
|
52 |
+
gr.Markdown("### Grad-cam")
|
53 |
+
gr.Markdown("### Lime")
|
54 |
+
gr.Markdown("### Sidu")
|
55 |
+
gr.Markdown("### Rise")
|
56 |
+
|
57 |
+
with gr.Row():
|
58 |
+
# generate random integer value
|
59 |
+
target_img = gr.Image(random_images[random.randint(0, 5)])
|
60 |
+
saliency_gradcam = gr.Image(random_images[random.randint(0, 5)])
|
61 |
+
saliency_lime = gr.Image(random_images[random.randint(0, 5)])
|
62 |
+
saliency_rise = gr.Image(random_images[random.randint(0, 5)])
|
63 |
+
saliency_sidu = gr.Image(random_images[random.randint(0, 5)])
|
64 |
|
65 |
+
with gr.Row():
|
66 |
+
dropdown1 = gr.Dropdown(choices=options, label="grad-cam")
|
67 |
+
dropdown2 = gr.Dropdown(choices=options, label="lime")
|
68 |
+
dropdown3 = gr.Dropdown(choices=options, label="sidu")
|
69 |
+
dropdown4 = gr.Dropdown(choices=options, label="rise")
|
70 |
+
|
71 |
+
gr.Markdown("### Image examples of the same class")
|
72 |
+
with gr.Row():
|
73 |
+
# generate random integer value
|
74 |
+
img1 = gr.Image(random_images[random.randint(0, 5)])
|
75 |
+
img2 = gr.Image(random_images[random.randint(0, 5)])
|
76 |
+
img3 = gr.Image(random_images[random.randint(0, 5)])
|
77 |
+
img4 = gr.Image(random_images[random.randint(0, 5)])
|
78 |
+
img5 = gr.Image(random_images[random.randint(0, 5)])
|
79 |
+
img6 = gr.Image(random_images[random.randint(0, 5)])
|
80 |
+
img7 = gr.Image(random_images[random.randint(0, 5)])
|
81 |
+
img8 = gr.Image(random_images[random.randint(0, 5)])
|
82 |
+
img9 = gr.Image(random_images[random.randint(0, 5)])
|
83 |
+
img10 = gr.Image(random_images[random.randint(0, 5)])
|
84 |
+
img11 = gr.Image(random_images[random.randint(0, 5)])
|
85 |
+
img12 = gr.Image(random_images[random.randint(0, 5)])
|
86 |
+
img13 = gr.Image(random_images[random.randint(0, 5)])
|
87 |
+
img14 = gr.Image(random_images[random.randint(0, 5)])
|
88 |
+
img15 = gr.Image(random_images[random.randint(0, 5)])
|
89 |
+
img16 = gr.Image(random_images[random.randint(0, 5)])
|
90 |
+
img17 = gr.Image(random_images[random.randint(0, 5)])
|
91 |
+
img18 = gr.Image(random_images[random.randint(0, 5)])
|
92 |
+
|
93 |
+
|
94 |
submit_button = gr.Button("Submit")
|
95 |
+
finish_button = gr.Button("Finish", visible=False)
|
96 |
+
|
97 |
+
def update_images(dropdown1, dropdown2, dropdown3, dropdown4, user_state):
|
98 |
+
|
99 |
+
#print('dropdowns', dropdowns)
|
100 |
+
#str_dropdowns = str(dropdowns)
|
101 |
+
# remove the curly braces
|
102 |
+
#dropdowns = str_dropdowns[1:-1]
|
103 |
+
#dropdowns = [r.split(":")[1].strip().replace("'", "") for r in dropdowns.split(",")]
|
104 |
+
|
105 |
+
print('dropdowns', dropdown1, dropdown2, dropdown3, dropdown4)
|
106 |
+
|
107 |
+
rank = [dropdown1,dropdown2,dropdown3,dropdown4]
|
108 |
+
print('rank', rank)
|
109 |
+
# image target and saliency images
|
110 |
+
target_img = gr.Image(random_images[random.randint(0, 5)])
|
111 |
+
saliency_gradcam = gr.Image(random_images[random.randint(0, 5)])
|
112 |
+
saliency_lime = gr.Image(random_images[random.randint(0, 5)])
|
113 |
+
saliency_rise = gr.Image(random_images[random.randint(0, 5)])
|
114 |
+
saliency_sidu = gr.Image(random_images[random.randint(0, 5)])
|
115 |
+
|
116 |
+
# image examples
|
117 |
+
img1 = gr.Image(random_images[random.randint(0, 5)])
|
118 |
+
img2 = gr.Image(random_images[random.randint(0, 5)])
|
119 |
+
img3 = gr.Image(random_images[random.randint(0, 5)])
|
120 |
+
img4 = gr.Image(random_images[random.randint(0, 5)])
|
121 |
+
img5 = gr.Image(random_images[random.randint(0, 5)])
|
122 |
+
img6 = gr.Image(random_images[random.randint(0, 5)])
|
123 |
+
img7 = gr.Image(random_images[random.randint(0, 5)])
|
124 |
+
img8 = gr.Image(random_images[random.randint(0, 5)])
|
125 |
+
img9 = gr.Image(random_images[random.randint(0, 5)])
|
126 |
+
img10 = gr.Image(random_images[random.randint(0, 5)])
|
127 |
+
img11 = gr.Image(random_images[random.randint(0, 5)])
|
128 |
+
img12 = gr.Image(random_images[random.randint(0, 5)])
|
129 |
+
img13 = gr.Image(random_images[random.randint(0, 5)])
|
130 |
+
img14 = gr.Image(random_images[random.randint(0, 5)])
|
131 |
+
img15 = gr.Image(random_images[random.randint(0, 5)])
|
132 |
+
img16 = gr.Image(random_images[random.randint(0, 5)])
|
133 |
+
img17 = gr.Image(random_images[random.randint(0, 5)])
|
134 |
+
img18 = gr.Image(random_images[random.randint(0, 5)])
|
135 |
+
|
136 |
+
|
137 |
+
if not isinstance(user_state, int):
|
138 |
+
if user_state.value == 5:
|
139 |
+
finish_button.visible = True
|
140 |
+
submit_button.visible = False
|
141 |
+
else:
|
142 |
+
finish_button.visible = False
|
143 |
+
submit_button.visible = True
|
144 |
+
|
145 |
+
|
146 |
+
return target_img, saliency_gradcam, saliency_lime, saliency_rise, saliency_sidu, img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16, img17, img18
|
147 |
|
148 |
+
def update_state(state):
|
149 |
+
|
150 |
+
count = state if isinstance(state, int) else state.value
|
151 |
+
print('\n\ncount', count)
|
152 |
+
return gr.State(count + 1)
|
153 |
|
154 |
+
def update_buttons(state):
|
155 |
+
count = state if isinstance(state, int) else state.value
|
156 |
+
finish_button, submit_button = None, None
|
157 |
+
if count == 5:
|
158 |
+
finish_button = gr.Button("Finish", visible=True)
|
159 |
+
submit_button = gr.Button("Submit", visible=False)
|
160 |
+
else:
|
161 |
+
finish_button = gr.Button("Finish", visible=False)
|
162 |
+
submit_button = gr.Button("Submit", visible=True)
|
163 |
+
|
164 |
+
return submit_button, finish_button
|
165 |
+
|
166 |
+
|
167 |
+
submit_button.click(
|
168 |
+
update_state,
|
169 |
+
inputs=user_state,
|
170 |
+
outputs=user_state
|
171 |
+
).then(
|
172 |
+
update_buttons,
|
173 |
+
inputs=user_state,
|
174 |
+
outputs={submit_button, finish_button}
|
175 |
+
).then(
|
176 |
+
update_images,
|
177 |
+
inputs=[dropdown1, dropdown2, dropdown3, dropdown4, user_state],
|
178 |
+
outputs={target_img, saliency_gradcam, saliency_lime, saliency_rise, saliency_sidu, img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16, img17, img18},
|
179 |
+
)
|
180 |
+
|
181 |
+
def redirect():
|
182 |
+
pass
|
183 |
+
|
184 |
+
finish_button.click(redirect, js="window.location = 'https://marcoparola.github.io/saliency-evaluation-app/end'")
|
185 |
+
|
186 |
+
demo.load()
|
187 |
|
188 |
+
demo.launch()
|
189 |
|
190 |
if __name__ == "__main__":
|
191 |
+
main()
|
src/__pycache__/utils.cpython-310.pyc
DELETED
Binary file (1.96 kB)
|
|
src/style.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
css = """
|
2 |
+
#gallery {
|
3 |
+
height: 300px;
|
4 |
+
}
|
5 |
+
|
6 |
+
.gallery-textlabel > * {
|
7 |
+
h2 {
|
8 |
+
font-weight: medium;
|
9 |
+
text-align: center;
|
10 |
+
margin-top: 1px;
|
11 |
+
padding: 0px;
|
12 |
+
font-size: 1em;
|
13 |
+
}
|
14 |
+
.svelte-i3tvor {
|
15 |
+
display:none;
|
16 |
+
visibility: hidden;
|
17 |
+
font-size: 0.02em;
|
18 |
+
}
|
19 |
+
}
|
20 |
+
"""
|
src/utils.py
CHANGED
@@ -8,11 +8,18 @@ config = yaml.safe_load(open("./config/config.yaml"))
|
|
8 |
|
9 |
# Function to load global variable from CSV
|
10 |
def load_global_variable():
|
|
|
11 |
if os.path.exists('global_variable.csv'):
|
12 |
df = pd.read_csv('global_variable.csv')
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def load_images(global_var):
|
18 |
image_dir = os.path.join(config["data_dir"], config["image_dir"])
|
@@ -20,23 +27,39 @@ def load_images(global_var):
|
|
20 |
images = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if os.path.isfile(os.path.join(image_dir, f))]
|
21 |
return images
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Function to load words based on global variable
|
24 |
def load_words(global_var):
|
25 |
words = [f"word_{global_var}_{i}" for i in range(10)]
|
26 |
return words
|
27 |
|
28 |
# Function to save results and increment global variable
|
29 |
-
def save_results(
|
30 |
|
31 |
filename = "results.txt"
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
with open(filename, 'w') as f:
|
34 |
-
f.write(
|
35 |
|
36 |
# Upload the file to Hugging Face Hub
|
37 |
api = HfApi()
|
38 |
token = os.getenv("HUGGINGFACE_TOKEN")
|
39 |
-
#token = HfFolder.get_token()
|
40 |
|
41 |
if not token:
|
42 |
print("Token not found. Please login to Hugging Face.")
|
|
|
8 |
|
9 |
# Function to load global variable from CSV
|
10 |
def load_global_variable():
|
11 |
+
global global_counter
|
12 |
if os.path.exists('global_variable.csv'):
|
13 |
df = pd.read_csv('global_variable.csv')
|
14 |
+
global_counter = df['value'][0]
|
15 |
+
|
16 |
+
print('global_counter', global_counter)
|
17 |
+
|
18 |
+
global_counter += 1
|
19 |
+
df = pd.DataFrame({'value': [global_counter]})
|
20 |
+
df.to_csv('global_variable.csv', index=False)
|
21 |
+
return global_counter
|
22 |
+
|
23 |
|
24 |
def load_images(global_var):
|
25 |
image_dir = os.path.join(config["data_dir"], config["image_dir"])
|
|
|
27 |
images = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if os.path.isfile(os.path.join(image_dir, f))]
|
28 |
return images
|
29 |
|
30 |
+
def load_saliencies(global_var):
|
31 |
+
image_dir = os.path.join(config["data_dir"], config["image_dir"])
|
32 |
+
#images = [f"image_{global_var}_{i}.jpg" for i in range(10)]
|
33 |
+
saliencies = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if os.path.isfile(os.path.join(image_dir, f))]
|
34 |
+
# select first 5 saliencies
|
35 |
+
saliencies = saliencies[:5]
|
36 |
+
return saliencies
|
37 |
+
|
38 |
# Function to load words based on global variable
|
39 |
def load_words(global_var):
|
40 |
words = [f"word_{global_var}_{i}" for i in range(10)]
|
41 |
return words
|
42 |
|
43 |
# Function to save results and increment global variable
|
44 |
+
def save_results(dropdowns):
|
45 |
|
46 |
filename = "results.txt"
|
47 |
+
print('ooooooo', global_counter)
|
48 |
+
print(dropdowns)
|
49 |
+
str_dropdowns = str(dropdowns)
|
50 |
+
# remove the curly braces
|
51 |
+
dropdowns = str_dropdowns[1:-1]
|
52 |
+
# split by comma and select the number contained in the string
|
53 |
+
dropdowns = [r.split(":")[1].strip().replace("'", "") for r in dropdowns.split(",")]
|
54 |
+
|
55 |
+
str_dropdowns = "\n".join([str(r) for r in dropdowns])
|
56 |
with open(filename, 'w') as f:
|
57 |
+
f.write(str_dropdowns)
|
58 |
|
59 |
# Upload the file to Hugging Face Hub
|
60 |
api = HfApi()
|
61 |
token = os.getenv("HUGGINGFACE_TOKEN")
|
62 |
+
# token = HfFolder.get_token()
|
63 |
|
64 |
if not token:
|
65 |
print("Token not found. Please login to Hugging Face.")
|