|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import ( |
|
BlipForConditionalGeneration, |
|
BlipProcessor, |
|
CLIPFeatureExtractor, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
) |
|
|
|
from ...models import AutoencoderKL, UNet2DConditionModel |
|
from ...models.cross_attention import CrossAttention |
|
from ...schedulers import DDIMScheduler, DDPMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler |
|
from ...schedulers.scheduling_ddim_inverse import DDIMInverseScheduler |
|
from ...utils import ( |
|
PIL_INTERPOLATION, |
|
BaseOutput, |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
logging, |
|
randn_tensor, |
|
replace_example_docstring, |
|
) |
|
from ..pipeline_utils import DiffusionPipeline |
|
from . import StableDiffusionPipelineOutput |
|
from .safety_checker import StableDiffusionSafetyChecker |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class Pix2PixInversionPipelineOutput(BaseOutput): |
|
""" |
|
Output class for Stable Diffusion pipelines. |
|
|
|
Args: |
|
latents (`torch.FloatTensor`) |
|
inverted latents tensor |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, |
|
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. |
|
""" |
|
|
|
latents: torch.FloatTensor |
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import requests |
|
>>> import torch |
|
|
|
>>> from diffusers import DDIMScheduler, StableDiffusionPix2PixZeroPipeline |
|
|
|
|
|
>>> def download(embedding_url, local_filepath): |
|
... r = requests.get(embedding_url) |
|
... with open(local_filepath, "wb") as f: |
|
... f.write(r.content) |
|
|
|
|
|
>>> model_ckpt = "CompVis/stable-diffusion-v1-4" |
|
>>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16) |
|
>>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) |
|
>>> pipeline.to("cuda") |
|
|
|
>>> prompt = "a high resolution painting of a cat in the style of van gough" |
|
>>> source_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/cat.pt" |
|
>>> target_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/dog.pt" |
|
|
|
>>> for url in [source_emb_url, target_emb_url]: |
|
... download(url, url.split("/")[-1]) |
|
|
|
>>> src_embeds = torch.load(source_emb_url.split("/")[-1]) |
|
>>> target_embeds = torch.load(target_emb_url.split("/")[-1]) |
|
>>> images = pipeline( |
|
... prompt, |
|
... source_embeds=src_embeds, |
|
... target_embeds=target_embeds, |
|
... num_inference_steps=50, |
|
... cross_attention_guidance_amount=0.15, |
|
... ).images |
|
|
|
>>> images[0].save("edited_image_dog.png") |
|
``` |
|
""" |
|
|
|
EXAMPLE_INVERT_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from transformers import BlipForConditionalGeneration, BlipProcessor |
|
>>> from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline |
|
|
|
>>> import requests |
|
>>> from PIL import Image |
|
|
|
>>> captioner_id = "Salesforce/blip-image-captioning-base" |
|
>>> processor = BlipProcessor.from_pretrained(captioner_id) |
|
>>> model = BlipForConditionalGeneration.from_pretrained( |
|
... captioner_id, torch_dtype=torch.float16, low_cpu_mem_usage=True |
|
... ) |
|
|
|
>>> sd_model_ckpt = "CompVis/stable-diffusion-v1-4" |
|
>>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained( |
|
... sd_model_ckpt, |
|
... caption_generator=model, |
|
... caption_processor=processor, |
|
... torch_dtype=torch.float16, |
|
... safety_checker=None, |
|
... ) |
|
|
|
>>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) |
|
>>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) |
|
>>> pipeline.enable_model_cpu_offload() |
|
|
|
>>> img_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/test_images/cats/cat_6.png" |
|
|
|
>>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB").resize((512, 512)) |
|
>>> # generate caption |
|
>>> caption = pipeline.generate_caption(raw_image) |
|
|
|
>>> # "a photography of a cat with flowers and dai dai daie - daie - daie kasaii" |
|
>>> inv_latents = pipeline.invert(caption, image=raw_image).latents |
|
>>> # we need to generate source and target embeds |
|
|
|
>>> source_prompts = ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"] |
|
|
|
>>> target_prompts = ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"] |
|
|
|
>>> source_embeds = pipeline.get_embeds(source_prompts) |
|
>>> target_embeds = pipeline.get_embeds(target_prompts) |
|
>>> # the latents can then be used to edit a real image |
|
|
|
>>> image = pipeline( |
|
... caption, |
|
... source_embeds=source_embeds, |
|
... target_embeds=target_embeds, |
|
... num_inference_steps=50, |
|
... cross_attention_guidance_amount=0.15, |
|
... generator=generator, |
|
... latents=inv_latents, |
|
... negative_prompt=caption, |
|
... ).images[0] |
|
>>> image.save("edited_image.png") |
|
``` |
|
""" |
|
|
|
|
|
|
|
def preprocess(image): |
|
if isinstance(image, torch.Tensor): |
|
return image |
|
elif isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
w, h = image[0].size |
|
w, h = map(lambda x: x - x % 8, (w, h)) |
|
|
|
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = 2.0 * image - 1.0 |
|
image = torch.from_numpy(image) |
|
elif isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, dim=0) |
|
return image |
|
|
|
|
|
def prepare_unet(unet: UNet2DConditionModel): |
|
"""Modifies the UNet (`unet`) to perform Pix2Pix Zero optimizations.""" |
|
pix2pix_zero_attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
module_name = name.replace(".processor", "") |
|
module = unet.get_submodule(module_name) |
|
if "attn2" in name: |
|
pix2pix_zero_attn_procs[name] = Pix2PixZeroCrossAttnProcessor(is_pix2pix_zero=True) |
|
module.requires_grad_(True) |
|
else: |
|
pix2pix_zero_attn_procs[name] = Pix2PixZeroCrossAttnProcessor(is_pix2pix_zero=False) |
|
module.requires_grad_(False) |
|
|
|
unet.set_attn_processor(pix2pix_zero_attn_procs) |
|
return unet |
|
|
|
|
|
class Pix2PixZeroL2Loss: |
|
def __init__(self): |
|
self.loss = 0.0 |
|
|
|
def compute_loss(self, predictions, targets): |
|
self.loss += ((predictions - targets) ** 2).sum((1, 2)).mean(0) |
|
|
|
|
|
class Pix2PixZeroCrossAttnProcessor: |
|
"""An attention processor class to store the attention weights. |
|
In Pix2Pix Zero, it happens during computations in the cross-attention blocks.""" |
|
|
|
def __init__(self, is_pix2pix_zero=False): |
|
self.is_pix2pix_zero = is_pix2pix_zero |
|
if self.is_pix2pix_zero: |
|
self.reference_cross_attn_map = {} |
|
|
|
def __call__( |
|
self, |
|
attn: CrossAttention, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
timestep=None, |
|
loss=None, |
|
): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.cross_attention_norm: |
|
encoder_hidden_states = attn.norm_cross(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
if self.is_pix2pix_zero and timestep is not None: |
|
|
|
if loss is None: |
|
self.reference_cross_attn_map[timestep.item()] = attention_probs.detach().cpu() |
|
|
|
elif loss is not None: |
|
prev_attn_probs = self.reference_cross_attn_map.pop(timestep.item()) |
|
loss.compute_loss(attention_probs, prev_attn_probs.to(attention_probs.device)) |
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for pixel-levl image editing using Pix2Pix Zero. Based on Stable Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`], or [`DDPMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPFeatureExtractor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
requires_safety_checker (bool): |
|
Whether the pipeline requires a safety checker. We recommend setting it to True if you're using the |
|
pipeline publicly. |
|
""" |
|
_optional_components = [ |
|
"safety_checker", |
|
"feature_extractor", |
|
"caption_generator", |
|
"caption_processor", |
|
"inverse_scheduler", |
|
] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: Union[DDPMScheduler, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler], |
|
feature_extractor: CLIPFeatureExtractor, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
inverse_scheduler: DDIMInverseScheduler, |
|
caption_generator: BlipForConditionalGeneration, |
|
caption_processor: BlipProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
caption_processor=caption_processor, |
|
caption_generator=caption_generator, |
|
inverse_scheduler=inverse_scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a |
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. |
|
Note that offloading happens on a submodule basis. Memory savings are higher than with |
|
`enable_model_cpu_offload`, but performance is lower. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
if self.safety_checker is not None: |
|
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) |
|
|
|
def enable_model_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared |
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` |
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with |
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
|
from accelerate import cpu_offload_with_hook |
|
else: |
|
raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
hook = None |
|
for cpu_offloaded_model in [self.vae, self.text_encoder, self.unet, self.vae]: |
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) |
|
|
|
if self.safety_checker is not None: |
|
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) |
|
|
|
|
|
self.final_offload_hook = hook |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
else: |
|
has_nsfw_concept = None |
|
return image, has_nsfw_concept |
|
|
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
image, |
|
source_embeds, |
|
target_embeds, |
|
callback_steps, |
|
prompt_embeds=None, |
|
): |
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
if source_embeds is None and target_embeds is None: |
|
raise ValueError("`source_embeds` and `target_embeds` cannot be undefined.") |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@torch.no_grad() |
|
def generate_caption(self, images): |
|
"""Generates caption for a given image.""" |
|
text = "a photography of" |
|
|
|
prev_device = self.caption_generator.device |
|
|
|
device = self._execution_device |
|
inputs = self.caption_processor(images, text, return_tensors="pt").to( |
|
device=device, dtype=self.caption_generator.dtype |
|
) |
|
self.caption_generator.to(device) |
|
outputs = self.caption_generator.generate(**inputs, max_new_tokens=128) |
|
|
|
|
|
self.caption_generator.to(prev_device) |
|
|
|
caption = self.caption_processor.batch_decode(outputs, skip_special_tokens=True)[0] |
|
return caption |
|
|
|
def construct_direction(self, embs_source: torch.Tensor, embs_target: torch.Tensor): |
|
"""Constructs the edit direction to steer the image generation process semantically.""" |
|
return (embs_target.mean(0) - embs_source.mean(0)).unsqueeze(0) |
|
|
|
@torch.no_grad() |
|
def get_embeds(self, prompt: List[str], batch_size: int = 16) -> torch.FloatTensor: |
|
num_prompts = len(prompt) |
|
embeds = [] |
|
for i in range(0, num_prompts, batch_size): |
|
prompt_slice = prompt[i : i + batch_size] |
|
|
|
input_ids = self.tokenizer( |
|
prompt_slice, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
input_ids = input_ids.to(self.text_encoder.device) |
|
embeds.append(self.text_encoder(input_ids)[0]) |
|
|
|
return torch.cat(embeds, dim=0).mean(0)[None] |
|
|
|
def prepare_image_latents(self, image, batch_size, dtype, device, generator=None): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if isinstance(generator, list): |
|
init_latents = [ |
|
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
init_latents = self.vae.encode(image).latent_dist.sample(generator) |
|
|
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
latents = init_latents |
|
|
|
return latents |
|
|
|
def auto_corr_loss(self, hidden_states, generator=None): |
|
batch_size, channel, height, width = hidden_states.shape |
|
if batch_size > 1: |
|
raise ValueError("Only batch_size 1 is supported for now") |
|
|
|
hidden_states = hidden_states.squeeze(0) |
|
|
|
reg_loss = 0.0 |
|
for i in range(hidden_states.shape[0]): |
|
noise = hidden_states[i][None, None, :, :] |
|
while True: |
|
roll_amount = torch.randint(noise.shape[2] // 2, (1,), generator=generator).item() |
|
reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=2)).mean() ** 2 |
|
reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=3)).mean() ** 2 |
|
|
|
if noise.shape[2] <= 8: |
|
break |
|
noise = F.avg_pool2d(noise, kernel_size=2) |
|
return reg_loss |
|
|
|
def kl_divergence(self, hidden_states): |
|
mean = hidden_states.mean() |
|
var = hidden_states.var() |
|
return var + mean**2 - 1 - torch.log(var + 1e-7) |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
image: Optional[Union[torch.FloatTensor, PIL.Image.Image]] = None, |
|
source_embeds: torch.Tensor = None, |
|
target_embeds: torch.Tensor = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
cross_attention_guidance_amount: float = 0.1, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
source_embeds (`torch.Tensor`): |
|
Source concept embeddings. Generation of the embeddings as per the [original |
|
paper](https://arxiv.org/abs/2302.03027). Used in discovering the edit direction. |
|
target_embeds (`torch.Tensor`): |
|
Target concept embeddings. Generation of the embeddings as per the [original |
|
paper](https://arxiv.org/abs/2302.03027). Used in discovering the edit direction. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
cross_attention_guidance_amount (`float`, defaults to 0.1): |
|
Amount of guidance needed from the reference cross-attention maps. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
image, |
|
source_embeds, |
|
target_embeds, |
|
callback_steps, |
|
prompt_embeds, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
latents_init = latents.clone() |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
|
|
self.unet = prepare_unet(self.unet) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs={"timestep": t}, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
edit_direction = self.construct_direction(source_embeds, target_embeds).to(prompt_embeds.device) |
|
|
|
|
|
prompt_embeds_edit = prompt_embeds.clone() |
|
prompt_embeds_edit[1:2] += edit_direction |
|
|
|
|
|
latents = latents_init |
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
|
|
|
|
x_in = latent_model_input.detach().clone() |
|
x_in.requires_grad = True |
|
|
|
|
|
opt = torch.optim.SGD([x_in], lr=cross_attention_guidance_amount) |
|
|
|
with torch.enable_grad(): |
|
|
|
loss = Pix2PixZeroL2Loss() |
|
|
|
|
|
noise_pred = self.unet( |
|
x_in, |
|
t, |
|
encoder_hidden_states=prompt_embeds_edit.detach(), |
|
cross_attention_kwargs={"timestep": t, "loss": loss}, |
|
).sample |
|
|
|
loss.loss.backward(retain_graph=False) |
|
opt.step() |
|
|
|
|
|
noise_pred = self.unet( |
|
x_in.detach(), |
|
t, |
|
encoder_hidden_states=prompt_embeds_edit, |
|
cross_attention_kwargs={"timestep": None}, |
|
).sample |
|
|
|
latents = x_in.detach().chunk(2)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
|
|
edited_image = self.decode_latents(latents) |
|
|
|
|
|
edited_image, has_nsfw_concept = self.run_safety_checker(edited_image, device, prompt_embeds.dtype) |
|
|
|
|
|
if output_type == "pil": |
|
edited_image = self.numpy_to_pil(edited_image) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (edited_image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=edited_image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_INVERT_DOC_STRING) |
|
def invert( |
|
self, |
|
prompt: Optional[str] = None, |
|
image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
cross_attention_guidance_amount: float = 0.1, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
lambda_auto_corr: float = 20.0, |
|
lambda_kl: float = 20.0, |
|
num_reg_steps: int = 5, |
|
num_auto_corr_rolls: int = 5, |
|
): |
|
r""" |
|
Function used to generate inverted latents given a prompt and image. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
image (`PIL.Image.Image`, *optional*): |
|
`Image`, or tensor representing an image batch which will be used for conditioning. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
cross_attention_guidance_amount (`float`, defaults to 0.1): |
|
Amount of guidance needed from the reference cross-attention maps. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
lambda_auto_corr (`float`, *optional*, defaults to 20.0): |
|
Lambda parameter to control auto correction |
|
lambda_kl (`float`, *optional*, defaults to 20.0): |
|
Lambda parameter to control Kullback–Leibler divergence output |
|
num_reg_steps (`int`, *optional*, defaults to 5): |
|
Number of regularization loss steps |
|
num_auto_corr_rolls (`int`, *optional*, defaults to 5): |
|
Number of auto correction roll steps |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.pipeline_stable_diffusion_pix2pix_zero.Pix2PixInversionPipelineOutput`] or |
|
`tuple`: |
|
[`~pipelines.stable_diffusion.pipeline_stable_diffusion_pix2pix_zero.Pix2PixInversionPipelineOutput`] if |
|
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is the inverted |
|
latents tensor and then second is the corresponding decoded image. |
|
""" |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
image = preprocess(image) |
|
|
|
|
|
latents = self.prepare_image_latents(image, batch_size, self.vae.dtype, device, generator) |
|
|
|
|
|
num_images_per_prompt = 1 |
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
prompt_embeds=prompt_embeds, |
|
) |
|
|
|
|
|
self.inverse_scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.inverse_scheduler.timesteps |
|
|
|
|
|
|
|
self.unet = prepare_unet(self.unet) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order |
|
with self.progress_bar(total=num_inference_steps - 2) as progress_bar: |
|
for i, t in enumerate(timesteps[1:-1]): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs={"timestep": t}, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
with torch.enable_grad(): |
|
for _ in range(num_reg_steps): |
|
if lambda_auto_corr > 0: |
|
for _ in range(num_auto_corr_rolls): |
|
var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) |
|
l_ac = self.auto_corr_loss(var, generator=generator) |
|
l_ac.backward() |
|
|
|
grad = var.grad.detach() / num_auto_corr_rolls |
|
noise_pred = noise_pred - lambda_auto_corr * grad |
|
|
|
if lambda_kl > 0: |
|
var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) |
|
|
|
l_kld = self.kl_divergence(var) |
|
l_kld.backward() |
|
|
|
grad = var.grad.detach() |
|
noise_pred = noise_pred - lambda_kl * grad |
|
|
|
noise_pred = noise_pred.detach() |
|
|
|
|
|
latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
inverted_latents = latents.detach().clone() |
|
|
|
|
|
image = self.decode_latents(latents.detach()) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (inverted_latents, image) |
|
|
|
return Pix2PixInversionPipelineOutput(latents=inverted_latents, images=image) |
|
|