# Copyright 2023 Pix2Pix Zero Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import PIL import torch import torch.nn.functional as F from transformers import ( BlipForConditionalGeneration, BlipProcessor, CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, ) from ...models import AutoencoderKL, UNet2DConditionModel from ...models.cross_attention import CrossAttention from ...schedulers import DDIMScheduler, DDPMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler from ...schedulers.scheduling_ddim_inverse import DDIMInverseScheduler from ...utils import ( PIL_INTERPOLATION, BaseOutput, is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from ..pipeline_utils import DiffusionPipeline from . import StableDiffusionPipelineOutput from .safety_checker import StableDiffusionSafetyChecker logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class Pix2PixInversionPipelineOutput(BaseOutput): """ Output class for Stable Diffusion pipelines. Args: latents (`torch.FloatTensor`) inverted latents tensor images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. """ latents: torch.FloatTensor images: Union[List[PIL.Image.Image], np.ndarray] EXAMPLE_DOC_STRING = """ Examples: ```py >>> import requests >>> import torch >>> from diffusers import DDIMScheduler, StableDiffusionPix2PixZeroPipeline >>> def download(embedding_url, local_filepath): ... r = requests.get(embedding_url) ... with open(local_filepath, "wb") as f: ... f.write(r.content) >>> model_ckpt = "CompVis/stable-diffusion-v1-4" >>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16) >>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) >>> pipeline.to("cuda") >>> prompt = "a high resolution painting of a cat in the style of van gough" >>> source_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/cat.pt" >>> target_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/dog.pt" >>> for url in [source_emb_url, target_emb_url]: ... download(url, url.split("/")[-1]) >>> src_embeds = torch.load(source_emb_url.split("/")[-1]) >>> target_embeds = torch.load(target_emb_url.split("/")[-1]) >>> images = pipeline( ... prompt, ... source_embeds=src_embeds, ... target_embeds=target_embeds, ... num_inference_steps=50, ... cross_attention_guidance_amount=0.15, ... ).images >>> images[0].save("edited_image_dog.png") ``` """ EXAMPLE_INVERT_DOC_STRING = """ Examples: ```py >>> import torch >>> from transformers import BlipForConditionalGeneration, BlipProcessor >>> from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline >>> import requests >>> from PIL import Image >>> captioner_id = "Salesforce/blip-image-captioning-base" >>> processor = BlipProcessor.from_pretrained(captioner_id) >>> model = BlipForConditionalGeneration.from_pretrained( ... captioner_id, torch_dtype=torch.float16, low_cpu_mem_usage=True ... ) >>> sd_model_ckpt = "CompVis/stable-diffusion-v1-4" >>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained( ... sd_model_ckpt, ... caption_generator=model, ... caption_processor=processor, ... torch_dtype=torch.float16, ... safety_checker=None, ... ) >>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) >>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) >>> pipeline.enable_model_cpu_offload() >>> img_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/test_images/cats/cat_6.png" >>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB").resize((512, 512)) >>> # generate caption >>> caption = pipeline.generate_caption(raw_image) >>> # "a photography of a cat with flowers and dai dai daie - daie - daie kasaii" >>> inv_latents = pipeline.invert(caption, image=raw_image).latents >>> # we need to generate source and target embeds >>> source_prompts = ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"] >>> target_prompts = ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"] >>> source_embeds = pipeline.get_embeds(source_prompts) >>> target_embeds = pipeline.get_embeds(target_prompts) >>> # the latents can then be used to edit a real image >>> image = pipeline( ... caption, ... source_embeds=source_embeds, ... target_embeds=target_embeds, ... num_inference_steps=50, ... cross_attention_guidance_amount=0.15, ... generator=generator, ... latents=inv_latents, ... negative_prompt=caption, ... ).images[0] >>> image.save("edited_image.png") ``` """ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess def preprocess(image): if isinstance(image, torch.Tensor): return image elif isinstance(image, PIL.Image.Image): image = [image] if isinstance(image[0], PIL.Image.Image): w, h = image[0].size w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8 image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] image = np.concatenate(image, axis=0) image = np.array(image).astype(np.float32) / 255.0 image = image.transpose(0, 3, 1, 2) image = 2.0 * image - 1.0 image = torch.from_numpy(image) elif isinstance(image[0], torch.Tensor): image = torch.cat(image, dim=0) return image def prepare_unet(unet: UNet2DConditionModel): """Modifies the UNet (`unet`) to perform Pix2Pix Zero optimizations.""" pix2pix_zero_attn_procs = {} for name in unet.attn_processors.keys(): module_name = name.replace(".processor", "") module = unet.get_submodule(module_name) if "attn2" in name: pix2pix_zero_attn_procs[name] = Pix2PixZeroCrossAttnProcessor(is_pix2pix_zero=True) module.requires_grad_(True) else: pix2pix_zero_attn_procs[name] = Pix2PixZeroCrossAttnProcessor(is_pix2pix_zero=False) module.requires_grad_(False) unet.set_attn_processor(pix2pix_zero_attn_procs) return unet class Pix2PixZeroL2Loss: def __init__(self): self.loss = 0.0 def compute_loss(self, predictions, targets): self.loss += ((predictions - targets) ** 2).sum((1, 2)).mean(0) class Pix2PixZeroCrossAttnProcessor: """An attention processor class to store the attention weights. In Pix2Pix Zero, it happens during computations in the cross-attention blocks.""" def __init__(self, is_pix2pix_zero=False): self.is_pix2pix_zero = is_pix2pix_zero if self.is_pix2pix_zero: self.reference_cross_attn_map = {} def __call__( self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, timestep=None, loss=None, ): batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.cross_attention_norm: encoder_hidden_states = attn.norm_cross(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) if self.is_pix2pix_zero and timestep is not None: # new bookkeeping to save the attention weights. if loss is None: self.reference_cross_attn_map[timestep.item()] = attention_probs.detach().cpu() # compute loss elif loss is not None: prev_attn_probs = self.reference_cross_attn_map.pop(timestep.item()) loss.compute_loss(attention_probs, prev_attn_probs.to(attention_probs.device)) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline): r""" Pipeline for pixel-levl image editing using Pix2Pix Zero. Based on Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`], or [`DDPMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. requires_safety_checker (bool): Whether the pipeline requires a safety checker. We recommend setting it to True if you're using the pipeline publicly. """ _optional_components = [ "safety_checker", "feature_extractor", "caption_generator", "caption_processor", "inverse_scheduler", ] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDPMScheduler, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler], feature_extractor: CLIPFeatureExtractor, safety_checker: StableDiffusionSafetyChecker, inverse_scheduler: DDIMInverseScheduler, caption_generator: BlipForConditionalGeneration, caption_processor: BlipProcessor, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, caption_processor=caption_processor, caption_generator=caption_generator, inverse_scheduler=inverse_scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload def enable_sequential_cpu_offload(self, gpu_id=0): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. Note that offloading happens on a submodule basis. Memory savings are higher than with `enable_model_cpu_offload`, but performance is lower. """ if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): from accelerate import cpu_offload else: raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") device = torch.device(f"cuda:{gpu_id}") if self.device.type != "cpu": self.to("cpu", silence_dtype_warnings=True) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: cpu_offload(cpu_offloaded_model, device) if self.safety_checker is not None: cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) def enable_model_cpu_offload(self, gpu_id=0): r""" Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. """ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.") device = torch.device(f"cuda:{gpu_id}") hook = None for cpu_offloaded_model in [self.vae, self.text_encoder, self.unet, self.vae]: _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) if self.safety_checker is not None: _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) # We'll offload the last model manually. self.final_offload_hook = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _execution_device(self): r""" Returns the device on which the pipeline's models will be executed. After calling `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module hooks. """ if not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) else: has_nsfw_concept = None return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, image, source_embeds, target_embeds, callback_steps, prompt_embeds=None, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if source_embeds is None and target_embeds is None: raise ValueError("`source_embeds` and `target_embeds` cannot be undefined.") if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def generate_caption(self, images): """Generates caption for a given image.""" text = "a photography of" prev_device = self.caption_generator.device device = self._execution_device inputs = self.caption_processor(images, text, return_tensors="pt").to( device=device, dtype=self.caption_generator.dtype ) self.caption_generator.to(device) outputs = self.caption_generator.generate(**inputs, max_new_tokens=128) # offload caption generator self.caption_generator.to(prev_device) caption = self.caption_processor.batch_decode(outputs, skip_special_tokens=True)[0] return caption def construct_direction(self, embs_source: torch.Tensor, embs_target: torch.Tensor): """Constructs the edit direction to steer the image generation process semantically.""" return (embs_target.mean(0) - embs_source.mean(0)).unsqueeze(0) @torch.no_grad() def get_embeds(self, prompt: List[str], batch_size: int = 16) -> torch.FloatTensor: num_prompts = len(prompt) embeds = [] for i in range(0, num_prompts, batch_size): prompt_slice = prompt[i : i + batch_size] input_ids = self.tokenizer( prompt_slice, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ).input_ids input_ids = input_ids.to(self.text_encoder.device) embeds.append(self.text_encoder(input_ids)[0]) return torch.cat(embeds, dim=0).mean(0)[None] def prepare_image_latents(self, image, batch_size, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if isinstance(generator, list): init_latents = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = self.vae.encode(image).latent_dist.sample(generator) init_latents = self.vae.config.scaling_factor * init_latents if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0) latents = init_latents return latents def auto_corr_loss(self, hidden_states, generator=None): batch_size, channel, height, width = hidden_states.shape if batch_size > 1: raise ValueError("Only batch_size 1 is supported for now") hidden_states = hidden_states.squeeze(0) # hidden_states must be shape [C,H,W] now reg_loss = 0.0 for i in range(hidden_states.shape[0]): noise = hidden_states[i][None, None, :, :] while True: roll_amount = torch.randint(noise.shape[2] // 2, (1,), generator=generator).item() reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=2)).mean() ** 2 reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=3)).mean() ** 2 if noise.shape[2] <= 8: break noise = F.avg_pool2d(noise, kernel_size=2) return reg_loss def kl_divergence(self, hidden_states): mean = hidden_states.mean() var = hidden_states.var() return var + mean**2 - 1 - torch.log(var + 1e-7) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, image: Optional[Union[torch.FloatTensor, PIL.Image.Image]] = None, source_embeds: torch.Tensor = None, target_embeds: torch.Tensor = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, cross_attention_guidance_amount: float = 0.1, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. source_embeds (`torch.Tensor`): Source concept embeddings. Generation of the embeddings as per the [original paper](https://arxiv.org/abs/2302.03027). Used in discovering the edit direction. target_embeds (`torch.Tensor`): Target concept embeddings. Generation of the embeddings as per the [original paper](https://arxiv.org/abs/2302.03027). Used in discovering the edit direction. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. cross_attention_guidance_amount (`float`, defaults to 0.1): Amount of guidance needed from the reference cross-attention maps. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 0. Define the spatial resolutions. height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, image, source_embeds, target_embeds, callback_steps, prompt_embeds, ) # 3. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if cross_attention_kwargs is None: cross_attention_kwargs = {} device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Generate the inverted noise from the input image or any other image # generated from the input prompt. num_channels_latents = self.unet.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) latents_init = latents.clone() # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 8. Rejig the UNet so that we can obtain the cross-attenion maps and # use them for guiding the subsequent image generation. self.unet = prepare_unet(self.unet) # 7. Denoising loop where we obtain the cross-attention maps. num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs={"timestep": t}, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) # 8. Compute the edit directions. edit_direction = self.construct_direction(source_embeds, target_embeds).to(prompt_embeds.device) # 9. Edit the prompt embeddings as per the edit directions discovered. prompt_embeds_edit = prompt_embeds.clone() prompt_embeds_edit[1:2] += edit_direction # 10. Second denoising loop to generate the edited image. latents = latents_init num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # we want to learn the latent such that it steers the generation # process towards the edited direction, so make the make initial # noise learnable x_in = latent_model_input.detach().clone() x_in.requires_grad = True # optimizer opt = torch.optim.SGD([x_in], lr=cross_attention_guidance_amount) with torch.enable_grad(): # initialize loss loss = Pix2PixZeroL2Loss() # predict the noise residual noise_pred = self.unet( x_in, t, encoder_hidden_states=prompt_embeds_edit.detach(), cross_attention_kwargs={"timestep": t, "loss": loss}, ).sample loss.loss.backward(retain_graph=False) opt.step() # recompute the noise noise_pred = self.unet( x_in.detach(), t, encoder_hidden_states=prompt_embeds_edit, cross_attention_kwargs={"timestep": None}, ).sample latents = x_in.detach().chunk(2)[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() # 11. Post-process the latents. edited_image = self.decode_latents(latents) # 12. Run the safety checker. edited_image, has_nsfw_concept = self.run_safety_checker(edited_image, device, prompt_embeds.dtype) # 13. Convert to PIL. if output_type == "pil": edited_image = self.numpy_to_pil(edited_image) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (edited_image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=edited_image, nsfw_content_detected=has_nsfw_concept) @torch.no_grad() @replace_example_docstring(EXAMPLE_INVERT_DOC_STRING) def invert( self, prompt: Optional[str] = None, image: Union[torch.FloatTensor, PIL.Image.Image] = None, num_inference_steps: int = 50, guidance_scale: float = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, cross_attention_guidance_amount: float = 0.1, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, lambda_auto_corr: float = 20.0, lambda_kl: float = 20.0, num_reg_steps: int = 5, num_auto_corr_rolls: int = 5, ): r""" Function used to generate inverted latents given a prompt and image. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. image (`PIL.Image.Image`, *optional*): `Image`, or tensor representing an image batch which will be used for conditioning. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. cross_attention_guidance_amount (`float`, defaults to 0.1): Amount of guidance needed from the reference cross-attention maps. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. lambda_auto_corr (`float`, *optional*, defaults to 20.0): Lambda parameter to control auto correction lambda_kl (`float`, *optional*, defaults to 20.0): Lambda parameter to control Kullback–Leibler divergence output num_reg_steps (`int`, *optional*, defaults to 5): Number of regularization loss steps num_auto_corr_rolls (`int`, *optional*, defaults to 5): Number of auto correction roll steps Examples: Returns: [`~pipelines.stable_diffusion.pipeline_stable_diffusion_pix2pix_zero.Pix2PixInversionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.pipeline_stable_diffusion_pix2pix_zero.Pix2PixInversionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is the inverted latents tensor and then second is the corresponding decoded image. """ # 1. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if cross_attention_kwargs is None: cross_attention_kwargs = {} device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Preprocess image image = preprocess(image) # 4. Prepare latent variables latents = self.prepare_image_latents(image, batch_size, self.vae.dtype, device, generator) # 5. Encode input prompt num_images_per_prompt = 1 prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, prompt_embeds=prompt_embeds, ) # 4. Prepare timesteps self.inverse_scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.inverse_scheduler.timesteps # 6. Rejig the UNet so that we can obtain the cross-attenion maps and # use them for guiding the subsequent image generation. self.unet = prepare_unet(self.unet) # 7. Denoising loop where we obtain the cross-attention maps. num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order with self.progress_bar(total=num_inference_steps - 2) as progress_bar: for i, t in enumerate(timesteps[1:-1]): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs={"timestep": t}, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # regularization of the noise prediction with torch.enable_grad(): for _ in range(num_reg_steps): if lambda_auto_corr > 0: for _ in range(num_auto_corr_rolls): var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) l_ac = self.auto_corr_loss(var, generator=generator) l_ac.backward() grad = var.grad.detach() / num_auto_corr_rolls noise_pred = noise_pred - lambda_auto_corr * grad if lambda_kl > 0: var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) l_kld = self.kl_divergence(var) l_kld.backward() grad = var.grad.detach() noise_pred = noise_pred - lambda_kl * grad noise_pred = noise_pred.detach() # compute the previous noisy sample x_t -> x_t-1 latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) inverted_latents = latents.detach().clone() # 8. Post-processing image = self.decode_latents(latents.detach()) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() # 9. Convert to PIL. if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (inverted_latents, image) return Pix2PixInversionPipelineOutput(latents=inverted_latents, images=image)