|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from ...models import AutoencoderKL, UNet2DConditionModel |
|
from ...schedulers import EulerDiscreteScheduler |
|
from ...utils import is_accelerate_available, logging, randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def preprocess(image): |
|
if isinstance(image, torch.Tensor): |
|
return image |
|
elif isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
w, h = image[0].size |
|
w, h = map(lambda x: x - x % 64, (w, h)) |
|
|
|
image = [np.array(i.resize((w, h)))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = 2.0 * image - 1.0 |
|
image = torch.from_numpy(image) |
|
elif isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, dim=0) |
|
return image |
|
|
|
|
|
class StableDiffusionLatentUpscalePipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline to upscale the resolution of Stable Diffusion output images by a factor of 2. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/main/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`EulerDiscreteScheduler`]. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: EulerDiscreteScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a |
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. |
|
""" |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `list(int)`): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
""" |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_length=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
text_encoder_out = self.text_encoder( |
|
text_input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
text_embeddings = text_encoder_out.hidden_states[-1] |
|
text_pooler_out = text_encoder_out.pooler_output |
|
|
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_length=True, |
|
return_tensors="pt", |
|
) |
|
|
|
uncond_encoder_out = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
uncond_embeddings = uncond_encoder_out.hidden_states[-1] |
|
uncond_pooler_out = uncond_encoder_out.pooler_output |
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
text_pooler_out = torch.cat([uncond_pooler_out, text_pooler_out]) |
|
|
|
return text_embeddings, text_pooler_out |
|
|
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
def check_inputs(self, prompt, image, callback_steps): |
|
if not isinstance(prompt, str) and not isinstance(prompt, list): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if ( |
|
not isinstance(image, torch.Tensor) |
|
and not isinstance(image, PIL.Image.Image) |
|
and not isinstance(image, list) |
|
): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}" |
|
) |
|
|
|
|
|
if isinstance(image, list) or isinstance(image, torch.Tensor): |
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
else: |
|
batch_size = len(prompt) |
|
if isinstance(image, list): |
|
image_batch_size = len(image) |
|
else: |
|
image_batch_size = image.shape[0] if image.ndim == 4 else 1 |
|
if batch_size != image_batch_size: |
|
raise ValueError( |
|
f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}." |
|
" Please make sure that passed `prompt` matches the batch size of `image`." |
|
) |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height, width) |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]], |
|
num_inference_steps: int = 75, |
|
guidance_scale: float = 9.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image upscaling. |
|
image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.FloatTensor`): |
|
`Image`, or tensor representing an image batch which will be upscaled. If it's a tensor, it can be |
|
either a latent output from a stable diffusion model, or an image tensor in the range `[-1, 1]`. It |
|
will be considered a `latent` if `image.shape[1]` is `4`; otherwise, it will be considered to be an |
|
image representation and encoded using this pipeline's `vae` encoder. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Examples: |
|
```py |
|
>>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline |
|
>>> import torch |
|
|
|
|
|
>>> pipeline = StableDiffusionPipeline.from_pretrained( |
|
... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipeline.to("cuda") |
|
|
|
>>> model_id = "stabilityai/sd-x2-latent-upscaler" |
|
>>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
>>> upscaler.to("cuda") |
|
|
|
>>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic" |
|
>>> generator = torch.manual_seed(33) |
|
|
|
>>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent").images |
|
|
|
>>> with torch.no_grad(): |
|
... image = pipeline.decode_latents(low_res_latents) |
|
>>> image = pipeline.numpy_to_pil(image)[0] |
|
|
|
>>> image.save("../images/a1.png") |
|
|
|
>>> upscaled_image = upscaler( |
|
... prompt=prompt, |
|
... image=low_res_latents, |
|
... num_inference_steps=20, |
|
... guidance_scale=0, |
|
... generator=generator, |
|
... ).images[0] |
|
|
|
>>> upscaled_image.save("../images/a2.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
|
|
self.check_inputs(prompt, image, callback_steps) |
|
|
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
if guidance_scale == 0: |
|
prompt = [""] * batch_size |
|
|
|
|
|
text_embeddings, text_pooler_out = self._encode_prompt( |
|
prompt, device, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
|
|
image = preprocess(image) |
|
image = image.to(dtype=text_embeddings.dtype, device=device) |
|
if image.shape[1] == 3: |
|
|
|
image = self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
batch_multiplier = 2 if do_classifier_free_guidance else 1 |
|
image = image[None, :] if image.ndim == 3 else image |
|
image = torch.cat([image] * batch_multiplier) |
|
|
|
|
|
|
|
|
|
noise_level = torch.tensor([0.0], dtype=torch.float32, device=device) |
|
noise_level = torch.cat([noise_level] * image.shape[0]) |
|
inv_noise_level = (noise_level**2 + 1) ** (-0.5) |
|
|
|
image_cond = F.interpolate(image, scale_factor=2, mode="nearest") * inv_noise_level[:, None, None, None] |
|
image_cond = image_cond.to(text_embeddings.dtype) |
|
|
|
noise_level_embed = torch.cat( |
|
[ |
|
torch.ones(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device), |
|
torch.zeros(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device), |
|
], |
|
dim=1, |
|
) |
|
|
|
timestep_condition = torch.cat([noise_level_embed, text_pooler_out], dim=1) |
|
|
|
|
|
height, width = image.shape[2:] |
|
num_channels_latents = self.vae.config.latent_channels |
|
latents = self.prepare_latents( |
|
batch_size, |
|
num_channels_latents, |
|
height * 2, |
|
width * 2, |
|
text_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
num_channels_image = image.shape[1] |
|
if num_channels_latents + num_channels_image != self.unet.config.in_channels: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_image`: {num_channels_image} " |
|
f" = {num_channels_latents+num_channels_image}. Please verify the config of" |
|
" `pipeline.unet` or your `image` input." |
|
) |
|
|
|
|
|
num_warmup_steps = 0 |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
sigma = self.scheduler.sigmas[i] |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
scaled_model_input = torch.cat([scaled_model_input, image_cond], dim=1) |
|
|
|
timestep = torch.log(sigma) * 0.25 |
|
|
|
noise_pred = self.unet( |
|
scaled_model_input, |
|
timestep, |
|
encoder_hidden_states=text_embeddings, |
|
timestep_cond=timestep_condition, |
|
).sample |
|
|
|
|
|
noise_pred = noise_pred[:, :-1] |
|
|
|
|
|
inv_sigma = 1 / (sigma**2 + 1) |
|
noise_pred = inv_sigma * latent_model_input + self.scheduler.scale_model_input(sigma, t) * noise_pred |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|