Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,182 @@
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
# demo.launch()
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
import os
|
| 6 |
import re
|
| 7 |
from datetime import datetime
|
|
|
|
| 8 |
|
| 9 |
LEADERBOARD_FILE = "leaderboard.csv" # File to store all submissions persistently
|
|
|
|
| 10 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
def initialize_leaderboard_file():
|
| 13 |
"""
|
| 14 |
Ensure the leaderboard file exists and has the correct headers.
|
|
@@ -74,18 +242,23 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
| 74 |
"""
|
| 75 |
Evaluate predictions and optionally add results to the leaderboard.
|
| 76 |
"""
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
if not prediction_file:
|
| 81 |
return "Prediction file not uploaded.", load_leaderboard()
|
| 82 |
|
| 83 |
try:
|
| 84 |
-
# Load predictions and ground truth
|
| 85 |
predictions_df = pd.read_csv(prediction_file.name)
|
| 86 |
-
ground_truth_df = pd.read_csv(ground_truth_file)
|
| 87 |
-
|
| 88 |
-
# Merge predictions with ground truth
|
| 89 |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 90 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 91 |
|
|
@@ -122,7 +295,7 @@ initialize_leaderboard_file()
|
|
| 122 |
# Gradio Interface
|
| 123 |
with gr.Blocks() as demo:
|
| 124 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 125 |
-
|
| 126 |
with gr.Tabs():
|
| 127 |
# Submission Tab
|
| 128 |
with gr.TabItem("π
Submission"):
|
|
@@ -142,7 +315,7 @@ with gr.Blocks() as demo:
|
|
| 142 |
inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
|
| 143 |
outputs=[eval_status, leaderboard_table_preview],
|
| 144 |
)
|
| 145 |
-
|
| 146 |
# Leaderboard Tab
|
| 147 |
with gr.TabItem("π
Leaderboard"):
|
| 148 |
leaderboard_table = gr.Dataframe(
|
|
@@ -161,3 +334,4 @@ with gr.Blocks() as demo:
|
|
| 161 |
gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
| 162 |
|
| 163 |
demo.launch()
|
|
|
|
|
|
| 1 |
|
| 2 |
+
# # demo.launch()
|
| 3 |
+
# import gradio as gr
|
| 4 |
+
# import pandas as pd
|
| 5 |
+
# import os
|
| 6 |
+
# import re
|
| 7 |
+
# from datetime import datetime
|
| 8 |
+
|
| 9 |
+
# LEADERBOARD_FILE = "leaderboard.csv" # File to store all submissions persistently
|
| 10 |
+
# LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 11 |
+
|
| 12 |
+
# def initialize_leaderboard_file():
|
| 13 |
+
# """
|
| 14 |
+
# Ensure the leaderboard file exists and has the correct headers.
|
| 15 |
+
# """
|
| 16 |
+
# if not os.path.exists(LEADERBOARD_FILE):
|
| 17 |
+
# # Create the file with headers
|
| 18 |
+
# pd.DataFrame(columns=[
|
| 19 |
+
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 20 |
+
# "Correct Predictions", "Total Questions", "Timestamp"
|
| 21 |
+
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
| 22 |
+
# else:
|
| 23 |
+
# # Check if the file is empty and write headers if needed
|
| 24 |
+
# if os.stat(LEADERBOARD_FILE).st_size == 0:
|
| 25 |
+
# pd.DataFrame(columns=[
|
| 26 |
+
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 27 |
+
# "Correct Predictions", "Total Questions", "Timestamp"
|
| 28 |
+
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
| 29 |
+
|
| 30 |
+
# def clean_answer(answer):
|
| 31 |
+
# """
|
| 32 |
+
# Clean and normalize the predicted answers.
|
| 33 |
+
# """
|
| 34 |
+
# if pd.isna(answer):
|
| 35 |
+
# return None
|
| 36 |
+
# answer = str(answer)
|
| 37 |
+
# clean = re.sub(r'[^A-Da-d]', '', answer)
|
| 38 |
+
# if clean:
|
| 39 |
+
# return clean[0].upper()
|
| 40 |
+
# return None
|
| 41 |
+
|
| 42 |
+
# def update_leaderboard(results):
|
| 43 |
+
# """
|
| 44 |
+
# Append new submission results to the leaderboard file.
|
| 45 |
+
# """
|
| 46 |
+
# new_entry = {
|
| 47 |
+
# "Model Name": results['model_name'],
|
| 48 |
+
# "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
| 49 |
+
# "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
| 50 |
+
# "Correct Predictions": results['correct_predictions'],
|
| 51 |
+
# "Total Questions": results['total_questions'],
|
| 52 |
+
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 53 |
+
# }
|
| 54 |
+
|
| 55 |
+
# new_entry_df = pd.DataFrame([new_entry])
|
| 56 |
+
# new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
| 57 |
+
|
| 58 |
+
# def load_leaderboard():
|
| 59 |
+
# """
|
| 60 |
+
# Load all submissions from the leaderboard file.
|
| 61 |
+
# """
|
| 62 |
+
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
| 63 |
+
# return pd.DataFrame({
|
| 64 |
+
# "Model Name": [],
|
| 65 |
+
# "Overall Accuracy": [],
|
| 66 |
+
# "Valid Accuracy": [],
|
| 67 |
+
# "Correct Predictions": [],
|
| 68 |
+
# "Total Questions": [],
|
| 69 |
+
# "Timestamp": [],
|
| 70 |
+
# })
|
| 71 |
+
# return pd.read_csv(LEADERBOARD_FILE)
|
| 72 |
+
|
| 73 |
+
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
| 74 |
+
# """
|
| 75 |
+
# Evaluate predictions and optionally add results to the leaderboard.
|
| 76 |
+
# """
|
| 77 |
+
# ground_truth_file = "ground_truth.csv"
|
| 78 |
+
# if not os.path.exists(ground_truth_file):
|
| 79 |
+
# return "Ground truth file not found.", load_leaderboard()
|
| 80 |
+
# if not prediction_file:
|
| 81 |
+
# return "Prediction file not uploaded.", load_leaderboard()
|
| 82 |
+
|
| 83 |
+
# try:
|
| 84 |
+
# # Load predictions and ground truth
|
| 85 |
+
# predictions_df = pd.read_csv(prediction_file.name)
|
| 86 |
+
# ground_truth_df = pd.read_csv(ground_truth_file)
|
| 87 |
+
|
| 88 |
+
# # Merge predictions with ground truth
|
| 89 |
+
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 90 |
+
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 91 |
+
|
| 92 |
+
# # Evaluate predictions
|
| 93 |
+
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 94 |
+
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 95 |
+
# total_predictions = len(merged_df)
|
| 96 |
+
# total_valid_predictions = len(valid_predictions)
|
| 97 |
+
|
| 98 |
+
# # Calculate accuracy
|
| 99 |
+
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 100 |
+
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
| 101 |
+
|
| 102 |
+
# results = {
|
| 103 |
+
# 'model_name': model_name if model_name else "Unknown Model",
|
| 104 |
+
# 'overall_accuracy': overall_accuracy,
|
| 105 |
+
# 'valid_accuracy': valid_accuracy,
|
| 106 |
+
# 'correct_predictions': correct_predictions,
|
| 107 |
+
# 'total_questions': total_predictions,
|
| 108 |
+
# }
|
| 109 |
+
|
| 110 |
+
# # Update leaderboard only if opted in
|
| 111 |
+
# if add_to_leaderboard:
|
| 112 |
+
# update_leaderboard(results)
|
| 113 |
+
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
| 114 |
+
# else:
|
| 115 |
+
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
| 116 |
+
# except Exception as e:
|
| 117 |
+
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
| 118 |
+
|
| 119 |
+
# # Initialize leaderboard file
|
| 120 |
+
# initialize_leaderboard_file()
|
| 121 |
+
|
| 122 |
+
# # Gradio Interface
|
| 123 |
+
# with gr.Blocks() as demo:
|
| 124 |
+
# gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 125 |
+
|
| 126 |
+
# with gr.Tabs():
|
| 127 |
+
# # Submission Tab
|
| 128 |
+
# with gr.TabItem("π
Submission"):
|
| 129 |
+
# file_input = gr.File(label="Upload Prediction CSV")
|
| 130 |
+
# model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
|
| 131 |
+
# add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
|
| 132 |
+
# eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
| 133 |
+
# leaderboard_table_preview = gr.Dataframe(
|
| 134 |
+
# value=load_leaderboard(),
|
| 135 |
+
# label="Leaderboard (Preview)",
|
| 136 |
+
# interactive=False,
|
| 137 |
+
# wrap=True,
|
| 138 |
+
# )
|
| 139 |
+
# eval_button = gr.Button("Evaluate and Update Leaderboard")
|
| 140 |
+
# eval_button.click(
|
| 141 |
+
# evaluate_predictions,
|
| 142 |
+
# inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
|
| 143 |
+
# outputs=[eval_status, leaderboard_table_preview],
|
| 144 |
+
# )
|
| 145 |
+
|
| 146 |
+
# # Leaderboard Tab
|
| 147 |
+
# with gr.TabItem("π
Leaderboard"):
|
| 148 |
+
# leaderboard_table = gr.Dataframe(
|
| 149 |
+
# value=load_leaderboard(),
|
| 150 |
+
# label="Leaderboard",
|
| 151 |
+
# interactive=False,
|
| 152 |
+
# wrap=True,
|
| 153 |
+
# )
|
| 154 |
+
# refresh_button = gr.Button("Refresh Leaderboard")
|
| 155 |
+
# refresh_button.click(
|
| 156 |
+
# lambda: load_leaderboard(),
|
| 157 |
+
# inputs=[],
|
| 158 |
+
# outputs=[leaderboard_table],
|
| 159 |
+
# )
|
| 160 |
+
|
| 161 |
+
# gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
| 162 |
+
|
| 163 |
# demo.launch()
|
| 164 |
+
|
| 165 |
+
|
| 166 |
import gradio as gr
|
| 167 |
import pandas as pd
|
| 168 |
import os
|
| 169 |
import re
|
| 170 |
from datetime import datetime
|
| 171 |
+
from huggingface_hub import hf_hub_download
|
| 172 |
|
| 173 |
LEADERBOARD_FILE = "leaderboard.csv" # File to store all submissions persistently
|
| 174 |
+
GROUND_TRUTH_FILE = "ground_truth.csv" # File for ground truth data
|
| 175 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 176 |
|
| 177 |
+
# Disable symlink warnings
|
| 178 |
+
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
| 179 |
+
|
| 180 |
def initialize_leaderboard_file():
|
| 181 |
"""
|
| 182 |
Ensure the leaderboard file exists and has the correct headers.
|
|
|
|
| 242 |
"""
|
| 243 |
Evaluate predictions and optionally add results to the leaderboard.
|
| 244 |
"""
|
| 245 |
+
try:
|
| 246 |
+
# Load ground truth data
|
| 247 |
+
ground_truth_path = hf_hub_download(
|
| 248 |
+
repo_id="SondosMB/ground-truth-dataset",
|
| 249 |
+
filename=GROUND_TRUTH_FILE,
|
| 250 |
+
use_auth_token=True
|
| 251 |
+
)
|
| 252 |
+
ground_truth_df = pd.read_csv(ground_truth_path)
|
| 253 |
+
except Exception as e:
|
| 254 |
+
return f"Error loading ground truth: {e}", load_leaderboard()
|
| 255 |
+
|
| 256 |
if not prediction_file:
|
| 257 |
return "Prediction file not uploaded.", load_leaderboard()
|
| 258 |
|
| 259 |
try:
|
| 260 |
+
# Load predictions and merge with ground truth
|
| 261 |
predictions_df = pd.read_csv(prediction_file.name)
|
|
|
|
|
|
|
|
|
|
| 262 |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 263 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 264 |
|
|
|
|
| 295 |
# Gradio Interface
|
| 296 |
with gr.Blocks() as demo:
|
| 297 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 298 |
+
|
| 299 |
with gr.Tabs():
|
| 300 |
# Submission Tab
|
| 301 |
with gr.TabItem("π
Submission"):
|
|
|
|
| 315 |
inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
|
| 316 |
outputs=[eval_status, leaderboard_table_preview],
|
| 317 |
)
|
| 318 |
+
|
| 319 |
# Leaderboard Tab
|
| 320 |
with gr.TabItem("π
Leaderboard"):
|
| 321 |
leaderboard_table = gr.Dataframe(
|
|
|
|
| 334 |
gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
| 335 |
|
| 336 |
demo.launch()
|
| 337 |
+
|