Update app.py
Browse files
app.py
CHANGED
|
@@ -1,245 +1,48 @@
|
|
| 1 |
|
| 2 |
-
# # demo.launch()
|
| 3 |
-
# import gradio as gr
|
| 4 |
-
# import pandas as pd
|
| 5 |
-
# import os
|
| 6 |
-
# import re
|
| 7 |
-
# from datetime import datetime
|
| 8 |
-
|
| 9 |
-
# LEADERBOARD_FILE = "leaderboard.csv" # File to store all submissions persistently
|
| 10 |
-
# LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 11 |
-
|
| 12 |
-
# def initialize_leaderboard_file():
|
| 13 |
-
# """
|
| 14 |
-
# Ensure the leaderboard file exists and has the correct headers.
|
| 15 |
-
# """
|
| 16 |
-
# if not os.path.exists(LEADERBOARD_FILE):
|
| 17 |
-
# # Create the file with headers
|
| 18 |
-
# pd.DataFrame(columns=[
|
| 19 |
-
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 20 |
-
# "Correct Predictions", "Total Questions", "Timestamp"
|
| 21 |
-
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
| 22 |
-
# else:
|
| 23 |
-
# # Check if the file is empty and write headers if needed
|
| 24 |
-
# if os.stat(LEADERBOARD_FILE).st_size == 0:
|
| 25 |
-
# pd.DataFrame(columns=[
|
| 26 |
-
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 27 |
-
# "Correct Predictions", "Total Questions", "Timestamp"
|
| 28 |
-
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
| 29 |
-
|
| 30 |
-
# def clean_answer(answer):
|
| 31 |
-
# """
|
| 32 |
-
# Clean and normalize the predicted answers.
|
| 33 |
-
# """
|
| 34 |
-
# if pd.isna(answer):
|
| 35 |
-
# return None
|
| 36 |
-
# answer = str(answer)
|
| 37 |
-
# clean = re.sub(r'[^A-Da-d]', '', answer)
|
| 38 |
-
# if clean:
|
| 39 |
-
# return clean[0].upper()
|
| 40 |
-
# return None
|
| 41 |
-
|
| 42 |
-
# def update_leaderboard(results):
|
| 43 |
-
# """
|
| 44 |
-
# Append new submission results to the leaderboard file.
|
| 45 |
-
# """
|
| 46 |
-
# new_entry = {
|
| 47 |
-
# "Model Name": results['model_name'],
|
| 48 |
-
# "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
| 49 |
-
# "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
| 50 |
-
# "Correct Predictions": results['correct_predictions'],
|
| 51 |
-
# "Total Questions": results['total_questions'],
|
| 52 |
-
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 53 |
-
# }
|
| 54 |
-
|
| 55 |
-
# new_entry_df = pd.DataFrame([new_entry])
|
| 56 |
-
# new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
| 57 |
-
|
| 58 |
-
# def load_leaderboard():
|
| 59 |
-
# """
|
| 60 |
-
# Load all submissions from the leaderboard file.
|
| 61 |
-
# """
|
| 62 |
-
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
| 63 |
-
# return pd.DataFrame({
|
| 64 |
-
# "Model Name": [],
|
| 65 |
-
# "Overall Accuracy": [],
|
| 66 |
-
# "Valid Accuracy": [],
|
| 67 |
-
# "Correct Predictions": [],
|
| 68 |
-
# "Total Questions": [],
|
| 69 |
-
# "Timestamp": [],
|
| 70 |
-
# })
|
| 71 |
-
# return pd.read_csv(LEADERBOARD_FILE)
|
| 72 |
-
|
| 73 |
-
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
| 74 |
-
# """
|
| 75 |
-
# Evaluate predictions and optionally add results to the leaderboard.
|
| 76 |
-
# """
|
| 77 |
-
# ground_truth_file = "ground_truth.csv"
|
| 78 |
-
# if not os.path.exists(ground_truth_file):
|
| 79 |
-
# return "Ground truth file not found.", load_leaderboard()
|
| 80 |
-
# if not prediction_file:
|
| 81 |
-
# return "Prediction file not uploaded.", load_leaderboard()
|
| 82 |
-
|
| 83 |
-
# try:
|
| 84 |
-
# # Load predictions and ground truth
|
| 85 |
-
# predictions_df = pd.read_csv(prediction_file.name)
|
| 86 |
-
# ground_truth_df = pd.read_csv(ground_truth_file)
|
| 87 |
-
|
| 88 |
-
# # Merge predictions with ground truth
|
| 89 |
-
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 90 |
-
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 91 |
-
|
| 92 |
-
# # Evaluate predictions
|
| 93 |
-
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 94 |
-
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 95 |
-
# total_predictions = len(merged_df)
|
| 96 |
-
# total_valid_predictions = len(valid_predictions)
|
| 97 |
-
|
| 98 |
-
# # Calculate accuracy
|
| 99 |
-
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 100 |
-
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
| 101 |
-
|
| 102 |
-
# results = {
|
| 103 |
-
# 'model_name': model_name if model_name else "Unknown Model",
|
| 104 |
-
# 'overall_accuracy': overall_accuracy,
|
| 105 |
-
# 'valid_accuracy': valid_accuracy,
|
| 106 |
-
# 'correct_predictions': correct_predictions,
|
| 107 |
-
# 'total_questions': total_predictions,
|
| 108 |
-
# }
|
| 109 |
-
|
| 110 |
-
# # Update leaderboard only if opted in
|
| 111 |
-
# if add_to_leaderboard:
|
| 112 |
-
# update_leaderboard(results)
|
| 113 |
-
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
| 114 |
-
# else:
|
| 115 |
-
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
| 116 |
-
# except Exception as e:
|
| 117 |
-
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
| 118 |
-
|
| 119 |
-
# # Initialize leaderboard file
|
| 120 |
-
# initialize_leaderboard_file()
|
| 121 |
-
|
| 122 |
-
# # Gradio Interface
|
| 123 |
-
# with gr.Blocks() as demo:
|
| 124 |
-
# gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 125 |
-
|
| 126 |
-
# with gr.Tabs():
|
| 127 |
-
# # Submission Tab
|
| 128 |
-
# with gr.TabItem("🏅 Submission"):
|
| 129 |
-
# file_input = gr.File(label="Upload Prediction CSV")
|
| 130 |
-
# model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
|
| 131 |
-
# add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
|
| 132 |
-
# eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
| 133 |
-
# leaderboard_table_preview = gr.Dataframe(
|
| 134 |
-
# value=load_leaderboard(),
|
| 135 |
-
# label="Leaderboard (Preview)",
|
| 136 |
-
# interactive=False,
|
| 137 |
-
# wrap=True,
|
| 138 |
-
# )
|
| 139 |
-
# eval_button = gr.Button("Evaluate and Update Leaderboard")
|
| 140 |
-
# eval_button.click(
|
| 141 |
-
# evaluate_predictions,
|
| 142 |
-
# inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
|
| 143 |
-
# outputs=[eval_status, leaderboard_table_preview],
|
| 144 |
-
# )
|
| 145 |
-
|
| 146 |
-
# # Leaderboard Tab
|
| 147 |
-
# with gr.TabItem("🏅 Leaderboard"):
|
| 148 |
-
# leaderboard_table = gr.Dataframe(
|
| 149 |
-
# value=load_leaderboard(),
|
| 150 |
-
# label="Leaderboard",
|
| 151 |
-
# interactive=False,
|
| 152 |
-
# wrap=True,
|
| 153 |
-
# )
|
| 154 |
-
# refresh_button = gr.Button("Refresh Leaderboard")
|
| 155 |
-
# refresh_button.click(
|
| 156 |
-
# lambda: load_leaderboard(),
|
| 157 |
-
# inputs=[],
|
| 158 |
-
# outputs=[leaderboard_table],
|
| 159 |
-
# )
|
| 160 |
-
|
| 161 |
-
# gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
| 162 |
-
|
| 163 |
# demo.launch()
|
| 164 |
-
|
| 165 |
import gradio as gr
|
| 166 |
import pandas as pd
|
|
|
|
| 167 |
import re
|
| 168 |
from datetime import datetime
|
| 169 |
-
from huggingface_hub import hf_hub_download
|
| 170 |
-
from datasets import Dataset
|
| 171 |
-
import os
|
| 172 |
|
| 173 |
-
#
|
| 174 |
-
HF_TOKEN = os.getenv("HF_TOKEN") # Hugging Face token stored as an environment variable
|
| 175 |
-
if not HF_TOKEN:
|
| 176 |
-
raise ValueError("HF_TOKEN is not set. Please add it as a secret in your Hugging Face Space.")
|
| 177 |
-
|
| 178 |
-
LEADERBOARD_REPO = "SondosMB/leaderboard-dataset" # Replace with your leaderboard dataset name
|
| 179 |
-
GROUND_TRUTH_REPO = "SondosMB/ground-truth-dataset" # Replace with your ground truth dataset name
|
| 180 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 181 |
|
| 182 |
-
def
|
| 183 |
"""
|
| 184 |
-
|
| 185 |
"""
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
| 198 |
|
| 199 |
-
def
|
| 200 |
"""
|
| 201 |
-
|
| 202 |
"""
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
print(f"Leaderboard file downloaded: {leaderboard_path}")
|
| 211 |
-
return pd.read_csv(leaderboard_path)
|
| 212 |
-
except Exception as e:
|
| 213 |
-
print(f"Error loading leaderboard: {e}")
|
| 214 |
-
return pd.DataFrame({
|
| 215 |
-
"Model Name": [],
|
| 216 |
-
"Overall Accuracy": [],
|
| 217 |
-
"Valid Accuracy": [],
|
| 218 |
-
"Correct Predictions": [],
|
| 219 |
-
"Total Questions": [],
|
| 220 |
-
"Timestamp": [],
|
| 221 |
-
})
|
| 222 |
|
| 223 |
def update_leaderboard(results):
|
| 224 |
"""
|
| 225 |
-
Append new submission results to the
|
| 226 |
"""
|
| 227 |
-
try:
|
| 228 |
-
# Load existing leaderboard or create a new one
|
| 229 |
-
leaderboard_path = hf_hub_download(
|
| 230 |
-
repo_id=LEADERBOARD_REPO,
|
| 231 |
-
filename="leaderboard.csv",
|
| 232 |
-
use_auth_token=HF_TOKEN
|
| 233 |
-
)
|
| 234 |
-
df = pd.read_csv(leaderboard_path)
|
| 235 |
-
except Exception as e:
|
| 236 |
-
print(f"Error loading leaderboard: {e}")
|
| 237 |
-
df = pd.DataFrame(columns=[
|
| 238 |
-
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 239 |
-
"Correct Predictions", "Total Questions", "Timestamp"
|
| 240 |
-
])
|
| 241 |
-
|
| 242 |
-
# Add new entry
|
| 243 |
new_entry = {
|
| 244 |
"Model Name": results['model_name'],
|
| 245 |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
|
@@ -248,38 +51,41 @@ def update_leaderboard(results):
|
|
| 248 |
"Total Questions": results['total_questions'],
|
| 249 |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 250 |
}
|
| 251 |
-
df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
|
| 252 |
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
dataset = Dataset.from_pandas(df)
|
| 256 |
-
dataset.push_to_hub(LEADERBOARD_REPO, split="train", private=True)
|
| 257 |
|
| 258 |
-
def
|
| 259 |
"""
|
| 260 |
-
|
| 261 |
"""
|
| 262 |
-
if
|
| 263 |
-
return
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
| 271 |
"""
|
| 272 |
Evaluate predictions and optionally add results to the leaderboard.
|
| 273 |
"""
|
| 274 |
-
|
| 275 |
-
if
|
| 276 |
return "Ground truth file not found.", load_leaderboard()
|
| 277 |
if not prediction_file:
|
| 278 |
return "Prediction file not uploaded.", load_leaderboard()
|
| 279 |
|
| 280 |
try:
|
| 281 |
-
# Load predictions and
|
| 282 |
predictions_df = pd.read_csv(prediction_file.name)
|
|
|
|
|
|
|
|
|
|
| 283 |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 284 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 285 |
|
|
@@ -310,9 +116,12 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
| 310 |
except Exception as e:
|
| 311 |
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
| 312 |
|
|
|
|
|
|
|
|
|
|
| 313 |
# Gradio Interface
|
| 314 |
with gr.Blocks() as demo:
|
| 315 |
-
gr.Markdown("#
|
| 316 |
|
| 317 |
with gr.Tabs():
|
| 318 |
# Submission Tab
|
|
@@ -352,6 +161,3 @@ with gr.Blocks() as demo:
|
|
| 352 |
gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
| 353 |
|
| 354 |
demo.launch()
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
|
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
# demo.launch()
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
+
import os
|
| 6 |
import re
|
| 7 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
LEADERBOARD_FILE = "leaderboard.csv" # File to store all submissions persistently
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 11 |
|
| 12 |
+
def initialize_leaderboard_file():
|
| 13 |
"""
|
| 14 |
+
Ensure the leaderboard file exists and has the correct headers.
|
| 15 |
"""
|
| 16 |
+
if not os.path.exists(LEADERBOARD_FILE):
|
| 17 |
+
# Create the file with headers
|
| 18 |
+
pd.DataFrame(columns=[
|
| 19 |
+
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 20 |
+
"Correct Predictions", "Total Questions", "Timestamp"
|
| 21 |
+
]).to_csv(LEADERBOARD_FILE, index=False)
|
| 22 |
+
else:
|
| 23 |
+
# Check if the file is empty and write headers if needed
|
| 24 |
+
if os.stat(LEADERBOARD_FILE).st_size == 0:
|
| 25 |
+
pd.DataFrame(columns=[
|
| 26 |
+
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 27 |
+
"Correct Predictions", "Total Questions", "Timestamp"
|
| 28 |
+
]).to_csv(LEADERBOARD_FILE, index=False)
|
| 29 |
|
| 30 |
+
def clean_answer(answer):
|
| 31 |
"""
|
| 32 |
+
Clean and normalize the predicted answers.
|
| 33 |
"""
|
| 34 |
+
if pd.isna(answer):
|
| 35 |
+
return None
|
| 36 |
+
answer = str(answer)
|
| 37 |
+
clean = re.sub(r'[^A-Da-d]', '', answer)
|
| 38 |
+
if clean:
|
| 39 |
+
return clean[0].upper()
|
| 40 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
def update_leaderboard(results):
|
| 43 |
"""
|
| 44 |
+
Append new submission results to the leaderboard file.
|
| 45 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
new_entry = {
|
| 47 |
"Model Name": results['model_name'],
|
| 48 |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
|
|
|
| 51 |
"Total Questions": results['total_questions'],
|
| 52 |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 53 |
}
|
|
|
|
| 54 |
|
| 55 |
+
new_entry_df = pd.DataFrame([new_entry])
|
| 56 |
+
new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
def load_leaderboard():
|
| 59 |
"""
|
| 60 |
+
Load all submissions from the leaderboard file.
|
| 61 |
"""
|
| 62 |
+
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
| 63 |
+
return pd.DataFrame({
|
| 64 |
+
"Model Name": [],
|
| 65 |
+
"Overall Accuracy": [],
|
| 66 |
+
"Valid Accuracy": [],
|
| 67 |
+
"Correct Predictions": [],
|
| 68 |
+
"Total Questions": [],
|
| 69 |
+
"Timestamp": [],
|
| 70 |
+
})
|
| 71 |
+
return pd.read_csv(LEADERBOARD_FILE)
|
| 72 |
|
| 73 |
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
| 74 |
"""
|
| 75 |
Evaluate predictions and optionally add results to the leaderboard.
|
| 76 |
"""
|
| 77 |
+
ground_truth_file = "ground_truth.csv"
|
| 78 |
+
if not os.path.exists(ground_truth_file):
|
| 79 |
return "Ground truth file not found.", load_leaderboard()
|
| 80 |
if not prediction_file:
|
| 81 |
return "Prediction file not uploaded.", load_leaderboard()
|
| 82 |
|
| 83 |
try:
|
| 84 |
+
# Load predictions and ground truth
|
| 85 |
predictions_df = pd.read_csv(prediction_file.name)
|
| 86 |
+
ground_truth_df = pd.read_csv(ground_truth_file)
|
| 87 |
+
|
| 88 |
+
# Merge predictions with ground truth
|
| 89 |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 90 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 91 |
|
|
|
|
| 116 |
except Exception as e:
|
| 117 |
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
| 118 |
|
| 119 |
+
# Initialize leaderboard file
|
| 120 |
+
initialize_leaderboard_file()
|
| 121 |
+
|
| 122 |
# Gradio Interface
|
| 123 |
with gr.Blocks() as demo:
|
| 124 |
+
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 125 |
|
| 126 |
with gr.Tabs():
|
| 127 |
# Submission Tab
|
|
|
|
| 161 |
gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
| 162 |
|
| 163 |
demo.launch()
|
|
|
|
|
|
|
|
|