Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
import torchvision.transforms as transforms | |
import torchvision.models as models | |
from PIL import Image | |
import copy | |
import pydiffvg | |
import argparse | |
def main(args): | |
pydiffvg.set_use_gpu(torch.cuda.is_available()) | |
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(args.content_file) | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
render = pydiffvg.RenderFunction.apply | |
img = render(canvas_width, # width | |
canvas_height, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
0, # seed | |
None, | |
*scene_args) | |
# Transform to gamma space | |
pydiffvg.imwrite(img.cpu(), 'results/style_transfer/init.png', gamma=1.0) | |
# HWC -> NCHW | |
img = img.unsqueeze(0) | |
img = img.permute(0, 3, 1, 2) # NHWC -> NCHW | |
loader = transforms.Compose([ | |
transforms.ToTensor()]) # transform it into a torch tensor | |
def image_loader(image_name): | |
image = Image.open(image_name) | |
# fake batch dimension required to fit network's input dimensions | |
image = loader(image).unsqueeze(0) | |
return image.to(pydiffvg.get_device(), torch.float) | |
style_img = image_loader(args.style_img) | |
# alpha blend content with a gray background | |
content_img = img[:, :3, :, :] * img[:, 3, :, :] + \ | |
0.5 * torch.ones([1, 3, img.shape[2], img.shape[3]]) * \ | |
(1 - img[:, 3, :, :]) | |
assert style_img.size() == content_img.size(), \ | |
"we need to import style and content images of the same size" | |
unloader = transforms.ToPILImage() # reconvert into PIL image | |
class ContentLoss(nn.Module): | |
def __init__(self, target,): | |
super(ContentLoss, self).__init__() | |
# we 'detach' the target content from the tree used | |
# to dynamically compute the gradient: this is a stated value, | |
# not a variable. Otherwise the forward method of the criterion | |
# will throw an error. | |
self.target = target.detach() | |
def forward(self, input): | |
self.loss = F.mse_loss(input, self.target) | |
return input | |
def gram_matrix(input): | |
a, b, c, d = input.size() # a=batch size(=1) | |
# b=number of feature maps | |
# (c,d)=dimensions of a f. map (N=c*d) | |
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL | |
G = torch.mm(features, features.t()) # compute the gram product | |
# we 'normalize' the values of the gram matrix | |
# by dividing by the number of element in each feature maps. | |
return G.div(a * b * c * d) | |
class StyleLoss(nn.Module): | |
def __init__(self, target_feature): | |
super(StyleLoss, self).__init__() | |
self.target = gram_matrix(target_feature).detach() | |
def forward(self, input): | |
G = gram_matrix(input) | |
self.loss = F.mse_loss(G, self.target) | |
return input | |
device = pydiffvg.get_device() | |
cnn = models.vgg19(pretrained=True).features.to(device).eval() | |
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) | |
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device) | |
# create a module to normalize input image so we can easily put it in a | |
# nn.Sequential | |
class Normalization(nn.Module): | |
def __init__(self, mean, std): | |
super(Normalization, self).__init__() | |
# .view the mean and std to make them [C x 1 x 1] so that they can | |
# directly work with image Tensor of shape [B x C x H x W]. | |
# B is batch size. C is number of channels. H is height and W is width. | |
self.mean = mean.clone().view(-1, 1, 1) | |
self.std = std.clone().view(-1, 1, 1) | |
def forward(self, img): | |
# normalize img | |
return (img - self.mean) / self.std | |
# desired depth layers to compute style/content losses : | |
content_layers_default = ['conv_4'] | |
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] | |
def get_style_model_and_losses(cnn, normalization_mean, normalization_std, | |
style_img, content_img, | |
content_layers=content_layers_default, | |
style_layers=style_layers_default): | |
cnn = copy.deepcopy(cnn) | |
# normalization module | |
normalization = Normalization(normalization_mean, normalization_std).to(device) | |
# just in order to have an iterable access to or list of content/syle | |
# losses | |
content_losses = [] | |
style_losses = [] | |
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential | |
# to put in modules that are supposed to be activated sequentially | |
model = nn.Sequential(normalization) | |
i = 0 # increment every time we see a conv | |
for layer in cnn.children(): | |
if isinstance(layer, nn.Conv2d): | |
i += 1 | |
name = 'conv_{}'.format(i) | |
elif isinstance(layer, nn.ReLU): | |
name = 'relu_{}'.format(i) | |
# The in-place version doesn't play very nicely with the ContentLoss | |
# and StyleLoss we insert below. So we replace with out-of-place | |
# ones here. | |
layer = nn.ReLU(inplace=False) | |
elif isinstance(layer, nn.MaxPool2d): | |
name = 'pool_{}'.format(i) | |
elif isinstance(layer, nn.BatchNorm2d): | |
name = 'bn_{}'.format(i) | |
else: | |
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) | |
model.add_module(name, layer) | |
if name in content_layers: | |
# add content loss: | |
target = model(content_img).detach() | |
content_loss = ContentLoss(target) | |
model.add_module("content_loss_{}".format(i), content_loss) | |
content_losses.append(content_loss) | |
if name in style_layers: | |
# add style loss: | |
target_feature = model(style_img).detach() | |
style_loss = StyleLoss(target_feature) | |
model.add_module("style_loss_{}".format(i), style_loss) | |
style_losses.append(style_loss) | |
# now we trim off the layers after the last content and style losses | |
for i in range(len(model) - 1, -1, -1): | |
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss): | |
break | |
model = model[:(i + 1)] | |
return model, style_losses, content_losses | |
def run_style_transfer(cnn, normalization_mean, normalization_std, | |
content_img, style_img, | |
canvas_width, canvas_height, | |
shapes, shape_groups, | |
num_steps=500, style_weight=5000, content_weight=1): | |
"""Run the style transfer.""" | |
print('Building the style transfer model..') | |
model, style_losses, content_losses = get_style_model_and_losses(cnn, | |
normalization_mean, normalization_std, style_img, content_img) | |
point_params = [] | |
color_params = [] | |
stroke_width_params = [] | |
for shape in shapes: | |
if isinstance(shape, pydiffvg.Path): | |
point_params.append(shape.points.requires_grad_()) | |
stroke_width_params.append(shape.stroke_width.requires_grad_()) | |
for shape_group in shape_groups: | |
if isinstance(shape_group.fill_color, torch.Tensor): | |
color_params.append(shape_group.fill_color.requires_grad_()) | |
elif isinstance(shape_group.fill_color, pydiffvg.LinearGradient): | |
point_params.append(shape_group.fill_color.begin.requires_grad_()) | |
point_params.append(shape_group.fill_color.end.requires_grad_()) | |
color_params.append(shape_group.fill_color.stop_colors.requires_grad_()) | |
if isinstance(shape_group.stroke_color, torch.Tensor): | |
color_params.append(shape_group.stroke_color.requires_grad_()) | |
elif isinstance(shape_group.stroke_color, pydiffvg.LinearGradient): | |
point_params.append(shape_group.stroke_color.begin.requires_grad_()) | |
point_params.append(shape_group.stroke_color.end.requires_grad_()) | |
color_params.append(shape_group.stroke_color.stop_colors.requires_grad_()) | |
point_optimizer = optim.Adam(point_params, lr=1.0) | |
color_optimizer = optim.Adam(color_params, lr=0.01) | |
stroke_width_optimizers = optim.Adam(stroke_width_params, lr=0.1) | |
print('Optimizing..') | |
run = [0] | |
while run[0] <= num_steps: | |
point_optimizer.zero_grad() | |
color_optimizer.zero_grad() | |
stroke_width_optimizers.zero_grad() | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
render = pydiffvg.RenderFunction.apply | |
img = render(canvas_width, # width | |
canvas_height, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
0, # seed | |
None, | |
*scene_args) | |
# alpha blend img with a gray background | |
img = img[:, :, :3] * img[:, :, 3:4] + \ | |
0.5 * torch.ones([img.shape[0], img.shape[1], 3]) * \ | |
(1 - img[:, :, 3:4]) | |
pydiffvg.imwrite(img.cpu(), | |
'results/style_transfer/step_{}.png'.format(run[0]), | |
gamma=1.0) | |
# HWC to NCHW | |
img = img.permute([2, 0, 1]).unsqueeze(0) | |
model(img) | |
style_score = 0 | |
content_score = 0 | |
for sl in style_losses: | |
style_score += sl.loss | |
for cl in content_losses: | |
content_score += cl.loss | |
style_score *= style_weight | |
content_score *= content_weight | |
loss = style_score + content_score | |
loss.backward() | |
run[0] += 1 | |
if run[0] % 1 == 0: | |
print("run {}:".format(run)) | |
print('Style Loss : {:4f} Content Loss: {:4f}'.format( | |
style_score.item(), content_score.item())) | |
print() | |
point_optimizer.step() | |
color_optimizer.step() | |
stroke_width_optimizers.step() | |
for color in color_params: | |
color.data.clamp_(0, 1) | |
for w in stroke_width_params: | |
w.data.clamp_(0.5, 4.0) | |
return shapes, shape_groups | |
shapes, shape_groups = run_style_transfer(\ | |
cnn, cnn_normalization_mean, cnn_normalization_std, | |
content_img, style_img, | |
canvas_width, canvas_height, shapes, shape_groups) | |
scene_args = pydiffvg.RenderFunction.serialize_scene(shapes, shape_groups) | |
render = pydiffvg.RenderFunction.apply | |
img = render(canvas_width, # width | |
canvas_height, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
0, # seed | |
None, | |
*scene_args) | |
# Transform to gamma space | |
pydiffvg.imwrite(img.cpu(), 'results/style_transfer/output.png', gamma=1.0) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("content_file", help="source SVG path") | |
parser.add_argument("style_img", help="target image path") | |
args = parser.parse_args() | |
main(args) | |