M3000j's picture
Upload folder using huggingface_hub
31726e5 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
import copy
import pydiffvg
import argparse
def main(args):
pydiffvg.set_use_gpu(torch.cuda.is_available())
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(args.content_file)
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(canvas_width, # width
canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
# Transform to gamma space
pydiffvg.imwrite(img.cpu(), 'results/style_transfer/init.png', gamma=1.0)
# HWC -> NCHW
img = img.unsqueeze(0)
img = img.permute(0, 3, 1, 2) # NHWC -> NCHW
loader = transforms.Compose([
transforms.ToTensor()]) # transform it into a torch tensor
def image_loader(image_name):
image = Image.open(image_name)
# fake batch dimension required to fit network's input dimensions
image = loader(image).unsqueeze(0)
return image.to(pydiffvg.get_device(), torch.float)
style_img = image_loader(args.style_img)
# alpha blend content with a gray background
content_img = img[:, :3, :, :] * img[:, 3, :, :] + \
0.5 * torch.ones([1, 3, img.shape[2], img.shape[3]]) * \
(1 - img[:, 3, :, :])
assert style_img.size() == content_img.size(), \
"we need to import style and content images of the same size"
unloader = transforms.ToPILImage() # reconvert into PIL image
class ContentLoss(nn.Module):
def __init__(self, target,):
super(ContentLoss, self).__init__()
# we 'detach' the target content from the tree used
# to dynamically compute the gradient: this is a stated value,
# not a variable. Otherwise the forward method of the criterion
# will throw an error.
self.target = target.detach()
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d)
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
device = pydiffvg.get_device()
cnn = models.vgg19(pretrained=True).features.to(device).eval()
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
# create a module to normalize input image so we can easily put it in a
# nn.Sequential
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = mean.clone().view(-1, 1, 1)
self.std = std.clone().view(-1, 1, 1)
def forward(self, img):
# normalize img
return (img - self.mean) / self.std
# desired depth layers to compute style/content losses :
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
style_img, content_img,
content_layers=content_layers_default,
style_layers=style_layers_default):
cnn = copy.deepcopy(cnn)
# normalization module
normalization = Normalization(normalization_mean, normalization_std).to(device)
# just in order to have an iterable access to or list of content/syle
# losses
content_losses = []
style_losses = []
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# add content loss:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
# now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
def run_style_transfer(cnn, normalization_mean, normalization_std,
content_img, style_img,
canvas_width, canvas_height,
shapes, shape_groups,
num_steps=500, style_weight=5000, content_weight=1):
"""Run the style transfer."""
print('Building the style transfer model..')
model, style_losses, content_losses = get_style_model_and_losses(cnn,
normalization_mean, normalization_std, style_img, content_img)
point_params = []
color_params = []
stroke_width_params = []
for shape in shapes:
if isinstance(shape, pydiffvg.Path):
point_params.append(shape.points.requires_grad_())
stroke_width_params.append(shape.stroke_width.requires_grad_())
for shape_group in shape_groups:
if isinstance(shape_group.fill_color, torch.Tensor):
color_params.append(shape_group.fill_color.requires_grad_())
elif isinstance(shape_group.fill_color, pydiffvg.LinearGradient):
point_params.append(shape_group.fill_color.begin.requires_grad_())
point_params.append(shape_group.fill_color.end.requires_grad_())
color_params.append(shape_group.fill_color.stop_colors.requires_grad_())
if isinstance(shape_group.stroke_color, torch.Tensor):
color_params.append(shape_group.stroke_color.requires_grad_())
elif isinstance(shape_group.stroke_color, pydiffvg.LinearGradient):
point_params.append(shape_group.stroke_color.begin.requires_grad_())
point_params.append(shape_group.stroke_color.end.requires_grad_())
color_params.append(shape_group.stroke_color.stop_colors.requires_grad_())
point_optimizer = optim.Adam(point_params, lr=1.0)
color_optimizer = optim.Adam(color_params, lr=0.01)
stroke_width_optimizers = optim.Adam(stroke_width_params, lr=0.1)
print('Optimizing..')
run = [0]
while run[0] <= num_steps:
point_optimizer.zero_grad()
color_optimizer.zero_grad()
stroke_width_optimizers.zero_grad()
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(canvas_width, # width
canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
# alpha blend img with a gray background
img = img[:, :, :3] * img[:, :, 3:4] + \
0.5 * torch.ones([img.shape[0], img.shape[1], 3]) * \
(1 - img[:, :, 3:4])
pydiffvg.imwrite(img.cpu(),
'results/style_transfer/step_{}.png'.format(run[0]),
gamma=1.0)
# HWC to NCHW
img = img.permute([2, 0, 1]).unsqueeze(0)
model(img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 1 == 0:
print("run {}:".format(run))
print('Style Loss : {:4f} Content Loss: {:4f}'.format(
style_score.item(), content_score.item()))
print()
point_optimizer.step()
color_optimizer.step()
stroke_width_optimizers.step()
for color in color_params:
color.data.clamp_(0, 1)
for w in stroke_width_params:
w.data.clamp_(0.5, 4.0)
return shapes, shape_groups
shapes, shape_groups = run_style_transfer(\
cnn, cnn_normalization_mean, cnn_normalization_std,
content_img, style_img,
canvas_width, canvas_height, shapes, shape_groups)
scene_args = pydiffvg.RenderFunction.serialize_scene(shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(canvas_width, # width
canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
# Transform to gamma space
pydiffvg.imwrite(img.cpu(), 'results/style_transfer/output.png', gamma=1.0)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("content_file", help="source SVG path")
parser.add_argument("style_img", help="target image path")
args = parser.parse_args()
main(args)