Spaces:
Sleeping
Sleeping
File size: 11,941 Bytes
31726e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
import copy
import pydiffvg
import argparse
def main(args):
pydiffvg.set_use_gpu(torch.cuda.is_available())
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(args.content_file)
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(canvas_width, # width
canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
# Transform to gamma space
pydiffvg.imwrite(img.cpu(), 'results/style_transfer/init.png', gamma=1.0)
# HWC -> NCHW
img = img.unsqueeze(0)
img = img.permute(0, 3, 1, 2) # NHWC -> NCHW
loader = transforms.Compose([
transforms.ToTensor()]) # transform it into a torch tensor
def image_loader(image_name):
image = Image.open(image_name)
# fake batch dimension required to fit network's input dimensions
image = loader(image).unsqueeze(0)
return image.to(pydiffvg.get_device(), torch.float)
style_img = image_loader(args.style_img)
# alpha blend content with a gray background
content_img = img[:, :3, :, :] * img[:, 3, :, :] + \
0.5 * torch.ones([1, 3, img.shape[2], img.shape[3]]) * \
(1 - img[:, 3, :, :])
assert style_img.size() == content_img.size(), \
"we need to import style and content images of the same size"
unloader = transforms.ToPILImage() # reconvert into PIL image
class ContentLoss(nn.Module):
def __init__(self, target,):
super(ContentLoss, self).__init__()
# we 'detach' the target content from the tree used
# to dynamically compute the gradient: this is a stated value,
# not a variable. Otherwise the forward method of the criterion
# will throw an error.
self.target = target.detach()
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d)
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
device = pydiffvg.get_device()
cnn = models.vgg19(pretrained=True).features.to(device).eval()
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
# create a module to normalize input image so we can easily put it in a
# nn.Sequential
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = mean.clone().view(-1, 1, 1)
self.std = std.clone().view(-1, 1, 1)
def forward(self, img):
# normalize img
return (img - self.mean) / self.std
# desired depth layers to compute style/content losses :
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
style_img, content_img,
content_layers=content_layers_default,
style_layers=style_layers_default):
cnn = copy.deepcopy(cnn)
# normalization module
normalization = Normalization(normalization_mean, normalization_std).to(device)
# just in order to have an iterable access to or list of content/syle
# losses
content_losses = []
style_losses = []
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# add content loss:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
# now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
def run_style_transfer(cnn, normalization_mean, normalization_std,
content_img, style_img,
canvas_width, canvas_height,
shapes, shape_groups,
num_steps=500, style_weight=5000, content_weight=1):
"""Run the style transfer."""
print('Building the style transfer model..')
model, style_losses, content_losses = get_style_model_and_losses(cnn,
normalization_mean, normalization_std, style_img, content_img)
point_params = []
color_params = []
stroke_width_params = []
for shape in shapes:
if isinstance(shape, pydiffvg.Path):
point_params.append(shape.points.requires_grad_())
stroke_width_params.append(shape.stroke_width.requires_grad_())
for shape_group in shape_groups:
if isinstance(shape_group.fill_color, torch.Tensor):
color_params.append(shape_group.fill_color.requires_grad_())
elif isinstance(shape_group.fill_color, pydiffvg.LinearGradient):
point_params.append(shape_group.fill_color.begin.requires_grad_())
point_params.append(shape_group.fill_color.end.requires_grad_())
color_params.append(shape_group.fill_color.stop_colors.requires_grad_())
if isinstance(shape_group.stroke_color, torch.Tensor):
color_params.append(shape_group.stroke_color.requires_grad_())
elif isinstance(shape_group.stroke_color, pydiffvg.LinearGradient):
point_params.append(shape_group.stroke_color.begin.requires_grad_())
point_params.append(shape_group.stroke_color.end.requires_grad_())
color_params.append(shape_group.stroke_color.stop_colors.requires_grad_())
point_optimizer = optim.Adam(point_params, lr=1.0)
color_optimizer = optim.Adam(color_params, lr=0.01)
stroke_width_optimizers = optim.Adam(stroke_width_params, lr=0.1)
print('Optimizing..')
run = [0]
while run[0] <= num_steps:
point_optimizer.zero_grad()
color_optimizer.zero_grad()
stroke_width_optimizers.zero_grad()
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(canvas_width, # width
canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
# alpha blend img with a gray background
img = img[:, :, :3] * img[:, :, 3:4] + \
0.5 * torch.ones([img.shape[0], img.shape[1], 3]) * \
(1 - img[:, :, 3:4])
pydiffvg.imwrite(img.cpu(),
'results/style_transfer/step_{}.png'.format(run[0]),
gamma=1.0)
# HWC to NCHW
img = img.permute([2, 0, 1]).unsqueeze(0)
model(img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 1 == 0:
print("run {}:".format(run))
print('Style Loss : {:4f} Content Loss: {:4f}'.format(
style_score.item(), content_score.item()))
print()
point_optimizer.step()
color_optimizer.step()
stroke_width_optimizers.step()
for color in color_params:
color.data.clamp_(0, 1)
for w in stroke_width_params:
w.data.clamp_(0.5, 4.0)
return shapes, shape_groups
shapes, shape_groups = run_style_transfer(\
cnn, cnn_normalization_mean, cnn_normalization_std,
content_img, style_img,
canvas_width, canvas_height, shapes, shape_groups)
scene_args = pydiffvg.RenderFunction.serialize_scene(shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(canvas_width, # width
canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
# Transform to gamma space
pydiffvg.imwrite(img.cpu(), 'results/style_transfer/output.png', gamma=1.0)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("content_file", help="source SVG path")
parser.add_argument("style_img", help="target image path")
args = parser.parse_args()
main(args)
|