Spaces:
Sleeping
Sleeping
import pydiffvg_tensorflow as pydiffvg | |
import tensorflow as tf | |
import skimage | |
import numpy as np | |
canvas_width = 256 | |
canvas_height = 256 | |
circle = pydiffvg.Circle(radius = tf.constant(40.0), | |
center = tf.constant([128.0, 128.0])) | |
shapes = [circle] | |
circle_group = pydiffvg.ShapeGroup(shape_ids = tf.constant([0], dtype = tf.int32), | |
fill_color = tf.constant([0.3, 0.6, 0.3, 1.0])) | |
shape_groups = [circle_group] | |
scene_args = pydiffvg.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
render = pydiffvg.render | |
img = render(tf.constant(256), # width | |
tf.constant(256), # height | |
tf.constant(2), # num_samples_x | |
tf.constant(2), # num_samples_y | |
tf.constant(0), # seed | |
*scene_args) | |
# The output image is in linear RGB space. Do Gamma correction before saving the image. | |
pydiffvg.imwrite(img, 'results/single_circle_tf/target.png', gamma=2.2) | |
target = tf.identity(img) | |
# Move the circle to produce initial guess | |
# normalize radius & center for easier learning rate | |
radius_n = tf.Variable(20.0 / 256.0) | |
center_n = tf.Variable([108.0 / 256.0, 138.0 / 256.0]) | |
color = tf.Variable([0.3, 0.2, 0.8, 1.0]) | |
circle.radius = radius_n * 256 | |
circle.center = center_n * 256 | |
circle_group.fill_color = color | |
scene_args = pydiffvg.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(tf.constant(256), # width | |
tf.constant(256), # height | |
tf.constant(2), # num_samples_x | |
tf.constant(2), # num_samples_y | |
tf.constant(1), # seed | |
*scene_args) | |
pydiffvg.imwrite(img, 'results/single_circle_tf/init.png', gamma=2.2) | |
optimizer = tf.compat.v1.train.AdamOptimizer(1e-2) | |
for t in range(100): | |
print('iteration:', t) | |
with tf.GradientTape() as tape: | |
# Forward pass: render the image. | |
circle.radius = radius_n * 256 | |
circle.center = center_n * 256 | |
circle_group.fill_color = color | |
# Important to use a different seed every iteration, otherwise the result | |
# would be biased. | |
scene_args = pydiffvg.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(tf.constant(256), # width | |
tf.constant(256), # height | |
tf.constant(2), # num_samples_x | |
tf.constant(2), # num_samples_y | |
tf.constant(t+1), # seed, | |
*scene_args) | |
loss_value = tf.reduce_sum(tf.square(img - target)) | |
print(f"loss_value: {loss_value}") | |
pydiffvg.imwrite(img, 'results/single_circle_tf/iter_{}.png'.format(t)) | |
grads = tape.gradient(loss_value, [radius_n, center_n, color]) | |
print(grads) | |
optimizer.apply_gradients(zip(grads, [radius_n, center_n, color])) | |
# Render the final result. | |
circle.radius = radius_n * 256 | |
circle.center = center_n * 256 | |
circle_group.fill_color = color | |
scene_args = pydiffvg.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(tf.constant(256), # width | |
tf.constant(256), # height | |
tf.constant(2), # num_samples_x | |
tf.constant(2), # num_samples_y | |
tf.constant(101), # seed | |
*scene_args) | |
# Save the images and differences. | |
pydiffvg.imwrite(img.cpu(), 'results/single_circle_tf/final.png') | |
# Convert the intermediate renderings to a video. | |
from subprocess import call | |
call(["ffmpeg", "-framerate", "24", "-i", | |
"results/single_circle_tf/iter_%d.png", "-vb", "20M", | |
"results/single_circle_tf/out.mp4"]) | |