Spaces:
Sleeping
Sleeping
File size: 3,622 Bytes
31726e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import pydiffvg_tensorflow as pydiffvg
import tensorflow as tf
import skimage
import numpy as np
canvas_width = 256
canvas_height = 256
circle = pydiffvg.Circle(radius = tf.constant(40.0),
center = tf.constant([128.0, 128.0]))
shapes = [circle]
circle_group = pydiffvg.ShapeGroup(shape_ids = tf.constant([0], dtype = tf.int32),
fill_color = tf.constant([0.3, 0.6, 0.3, 1.0]))
shape_groups = [circle_group]
scene_args = pydiffvg.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
render = pydiffvg.render
img = render(tf.constant(256), # width
tf.constant(256), # height
tf.constant(2), # num_samples_x
tf.constant(2), # num_samples_y
tf.constant(0), # seed
*scene_args)
# The output image is in linear RGB space. Do Gamma correction before saving the image.
pydiffvg.imwrite(img, 'results/single_circle_tf/target.png', gamma=2.2)
target = tf.identity(img)
# Move the circle to produce initial guess
# normalize radius & center for easier learning rate
radius_n = tf.Variable(20.0 / 256.0)
center_n = tf.Variable([108.0 / 256.0, 138.0 / 256.0])
color = tf.Variable([0.3, 0.2, 0.8, 1.0])
circle.radius = radius_n * 256
circle.center = center_n * 256
circle_group.fill_color = color
scene_args = pydiffvg.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
img = render(tf.constant(256), # width
tf.constant(256), # height
tf.constant(2), # num_samples_x
tf.constant(2), # num_samples_y
tf.constant(1), # seed
*scene_args)
pydiffvg.imwrite(img, 'results/single_circle_tf/init.png', gamma=2.2)
optimizer = tf.compat.v1.train.AdamOptimizer(1e-2)
for t in range(100):
print('iteration:', t)
with tf.GradientTape() as tape:
# Forward pass: render the image.
circle.radius = radius_n * 256
circle.center = center_n * 256
circle_group.fill_color = color
# Important to use a different seed every iteration, otherwise the result
# would be biased.
scene_args = pydiffvg.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
img = render(tf.constant(256), # width
tf.constant(256), # height
tf.constant(2), # num_samples_x
tf.constant(2), # num_samples_y
tf.constant(t+1), # seed,
*scene_args)
loss_value = tf.reduce_sum(tf.square(img - target))
print(f"loss_value: {loss_value}")
pydiffvg.imwrite(img, 'results/single_circle_tf/iter_{}.png'.format(t))
grads = tape.gradient(loss_value, [radius_n, center_n, color])
print(grads)
optimizer.apply_gradients(zip(grads, [radius_n, center_n, color]))
# Render the final result.
circle.radius = radius_n * 256
circle.center = center_n * 256
circle_group.fill_color = color
scene_args = pydiffvg.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
img = render(tf.constant(256), # width
tf.constant(256), # height
tf.constant(2), # num_samples_x
tf.constant(2), # num_samples_y
tf.constant(101), # seed
*scene_args)
# Save the images and differences.
pydiffvg.imwrite(img.cpu(), 'results/single_circle_tf/final.png')
# Convert the intermediate renderings to a video.
from subprocess import call
call(["ffmpeg", "-framerate", "24", "-i",
"results/single_circle_tf/iter_%d.png", "-vb", "20M",
"results/single_circle_tf/out.mp4"])
|