Animator2D-v1 / training-code.py
Lod_34
Add files via upload
98ebcac unverified
raw
history blame
6.64 kB
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel
from datasets import load_dataset
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
class SpriteDataset(Dataset):
def __init__(self, dataset_split="train"):
# Load the dataset from HuggingFace
self.dataset = load_dataset("pawkanarek/spraix_1024", split=dataset_split)
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Define image transforms
self.transform = transforms.Compose([
transforms.Resize((64, 64)), # Resize all sprites to same size
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
item = self.dataset[idx]
# Process text description
text = f"{item['text']}" # Contains frames, description, action, direction
encoded_text = self.tokenizer(
text,
padding="max_length",
max_length=128,
truncation=True,
return_tensors="pt"
)
# Process image
# The item['image'] is already a PIL Image. Convert it to RGB if it's not already
image = item['image'].convert('RGB')
# Removed Image.fromarray as it's unnecessary
image_tensor = self.transform(image)
return {
'text_ids': encoded_text['input_ids'].squeeze(),
'text_mask': encoded_text['attention_mask'].squeeze(),
'image': image_tensor
}
class TextEncoder(nn.Module):
def __init__(self):
super().__init__()
self.bert = AutoModel.from_pretrained("bert-base-uncased")
self.linear = nn.Linear(768, 512) # Reduce BERT output dimension
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
return self.linear(outputs.last_hidden_state[:, 0, :]) # Use [CLS] token
class SpriteGenerator(nn.Module):
def __init__(self, latent_dim=512):
super().__init__()
self.generator = nn.Sequential(
# Input: latent_dim x 1 x 1
nn.ConvTranspose2d(latent_dim, 512, 4, 1, 0, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
# 512 x 4 x 4
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
# 256 x 8 x 8
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
# 128 x 16 x 16
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
# 64 x 32 x 32
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False),
nn.Tanh()
# Output: 3 x 64 x 64
)
def forward(self, z):
z = z.unsqueeze(-1).unsqueeze(-1) # Add spatial dimensions
return self.generator(z)
class Animator2D(nn.Module):
def __init__(self):
super().__init__()
self.text_encoder = TextEncoder()
self.sprite_generator = SpriteGenerator()
def forward(self, input_ids, attention_mask):
text_features = self.text_encoder(input_ids, attention_mask)
generated_sprite = self.sprite_generator(text_features)
return generated_sprite
def train_model(num_epochs=100, batch_size=32, learning_rate=0.0002):
# Initialize dataset and dataloader
dataset = SpriteDataset()
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Initialize model and optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Animator2D().to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas=(0.5, 0.999))
criterion = nn.MSELoss()
# Training loop
for epoch in range(num_epochs):
for batch_idx, batch in enumerate(dataloader):
# Move data to device
text_ids = batch['text_ids'].to(device)
text_mask = batch['text_mask'].to(device)
real_images = batch['image'].to(device)
# Forward pass
generated_images = model(text_ids, text_mask)
# Calculate loss
loss = criterion(generated_images, real_images)
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f"Epoch [{epoch}/{num_epochs}] Batch [{batch_idx}/{len(dataloader)}] Loss: {loss.item():.4f}")
# Save the trained model
torch.save(model.state_dict(), "animator2d_model.pth")
return model
def generate_sprite_animation(model, num_frames, description, action, direction):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
# Prepare input text
text = f"{num_frames}-frame sprite animation of: {description}, that: {action}, facing: {direction}"
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
encoded_text = tokenizer(
text,
padding="max_length",
max_length=128,
truncation=True,
return_tensors="pt"
)
# Generate sprite sheet
with torch.no_grad():
text_ids = encoded_text['input_ids'].to(device)
text_mask = encoded_text['attention_mask'].to(device)
generated_sprite = model(text_ids, text_mask)
# Convert to image
generated_sprite = generated_sprite.cpu().squeeze(0)
generated_sprite = (generated_sprite + 1) / 2 # Denormalize
generated_sprite = transforms.ToPILImage()(generated_sprite)
return generated_sprite
# Example usage
if __name__ == "__main__":
# Train the model
model = train_model()
# Generate a new sprite animation
test_params = {
"num_frames": 17,
"description": "red-haired hobbit in green cape",
"action": "shoots with slingshot",
"direction": "East"
}
sprite_sheet = generate_sprite_animation(
model,
test_params["num_frames"],
test_params["description"],
test_params["action"],
test_params["direction"]
)
sprite_sheet.save("generated_sprite.png")