File size: 6,635 Bytes
98ebcac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel
from datasets import load_dataset
import numpy as np
from PIL import Image
import torchvision.transforms as transforms

class SpriteDataset(Dataset):
    def __init__(self, dataset_split="train"):
        # Load the dataset from HuggingFace
        self.dataset = load_dataset("pawkanarek/spraix_1024", split=dataset_split)
        self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        
        # Define image transforms
        self.transform = transforms.Compose([
            transforms.Resize((64, 64)),  # Resize all sprites to same size
            transforms.ToTensor(),
            transforms.Normalize((0.5,), (0.5,))
        ])
    
    def __len__(self):
        return len(self.dataset)
    
    def __getitem__(self, idx):
        item = self.dataset[idx]
        
        # Process text description
        text = f"{item['text']}"  # Contains frames, description, action, direction
        encoded_text = self.tokenizer(
            text,
            padding="max_length",
            max_length=128,
            truncation=True,
            return_tensors="pt"
        )
        
        # Process image
        # The item['image'] is already a PIL Image. Convert it to RGB if it's not already
        image = item['image'].convert('RGB')  
        # Removed Image.fromarray as it's unnecessary
        image_tensor = self.transform(image)
        
        return {
            'text_ids': encoded_text['input_ids'].squeeze(),
            'text_mask': encoded_text['attention_mask'].squeeze(),
            'image': image_tensor
        }

class TextEncoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = AutoModel.from_pretrained("bert-base-uncased")
        self.linear = nn.Linear(768, 512)  # Reduce BERT output dimension
        
    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        return self.linear(outputs.last_hidden_state[:, 0, :])  # Use [CLS] token

class SpriteGenerator(nn.Module):
    def __init__(self, latent_dim=512):
        super().__init__()
        
        self.generator = nn.Sequential(
            # Input: latent_dim x 1 x 1
            nn.ConvTranspose2d(latent_dim, 512, 4, 1, 0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 512 x 4 x 4
            nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            # 256 x 8 x 8
            nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            # 128 x 16 x 16
            nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            # 64 x 32 x 32
            nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False),
            nn.Tanh()
            # Output: 3 x 64 x 64
        )
        
    def forward(self, z):
        z = z.unsqueeze(-1).unsqueeze(-1)  # Add spatial dimensions
        return self.generator(z)

class Animator2D(nn.Module):
    def __init__(self):
        super().__init__()
        self.text_encoder = TextEncoder()
        self.sprite_generator = SpriteGenerator()
        
    def forward(self, input_ids, attention_mask):
        text_features = self.text_encoder(input_ids, attention_mask)
        generated_sprite = self.sprite_generator(text_features)
        return generated_sprite

def train_model(num_epochs=100, batch_size=32, learning_rate=0.0002):
    # Initialize dataset and dataloader
    dataset = SpriteDataset()
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
    
    # Initialize model and optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = Animator2D().to(device)
    optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas=(0.5, 0.999))
    criterion = nn.MSELoss()
    
    # Training loop
    for epoch in range(num_epochs):
        for batch_idx, batch in enumerate(dataloader):
            # Move data to device
            text_ids = batch['text_ids'].to(device)
            text_mask = batch['text_mask'].to(device)
            real_images = batch['image'].to(device)
            
            # Forward pass
            generated_images = model(text_ids, text_mask)
            
            # Calculate loss
            loss = criterion(generated_images, real_images)
            
            # Backward pass and optimization
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            if batch_idx % 100 == 0:
                print(f"Epoch [{epoch}/{num_epochs}] Batch [{batch_idx}/{len(dataloader)}] Loss: {loss.item():.4f}")
    
    # Save the trained model
    torch.save(model.state_dict(), "animator2d_model.pth")
    return model

def generate_sprite_animation(model, num_frames, description, action, direction):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.eval()
    
    # Prepare input text
    text = f"{num_frames}-frame sprite animation of: {description}, that: {action}, facing: {direction}"
    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    encoded_text = tokenizer(
        text,
        padding="max_length",
        max_length=128,
        truncation=True,
        return_tensors="pt"
    )
    
    # Generate sprite sheet
    with torch.no_grad():
        text_ids = encoded_text['input_ids'].to(device)
        text_mask = encoded_text['attention_mask'].to(device)
        generated_sprite = model(text_ids, text_mask)
        
    # Convert to image
    generated_sprite = generated_sprite.cpu().squeeze(0)
    generated_sprite = (generated_sprite + 1) / 2  # Denormalize
    generated_sprite = transforms.ToPILImage()(generated_sprite)
    
    return generated_sprite

# Example usage
if __name__ == "__main__":
    # Train the model
    model = train_model()
    
    # Generate a new sprite animation
    test_params = {
        "num_frames": 17,
        "description": "red-haired hobbit in green cape",
        "action": "shoots with slingshot",
        "direction": "East"
    }
    
    sprite_sheet = generate_sprite_animation(
        model,
        test_params["num_frames"],
        test_params["description"],
        test_params["action"],
        test_params["direction"]
    )
    sprite_sheet.save("generated_sprite.png")