Spaces:
Sleeping
Sleeping
| """ | |
| File: model.py | |
| Author: Elena Ryumina and Dmitry Ryumin | |
| Description: This module provides model architectures. | |
| License: MIT License | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import math | |
| class Bottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, in_channels, out_channels, i_downsample=None, stride=1): | |
| super(Bottleneck, self).__init__() | |
| self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias=False) | |
| self.batch_norm1 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99) | |
| self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding='same', bias=False) | |
| self.batch_norm2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99) | |
| self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0, bias=False) | |
| self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion, eps=0.001, momentum=0.99) | |
| self.i_downsample = i_downsample | |
| self.stride = stride | |
| self.relu = nn.ReLU() | |
| def forward(self, x): | |
| identity = x.clone() | |
| x = self.relu(self.batch_norm1(self.conv1(x))) | |
| x = self.relu(self.batch_norm2(self.conv2(x))) | |
| x = self.conv3(x) | |
| x = self.batch_norm3(x) | |
| #downsample if needed | |
| if self.i_downsample is not None: | |
| identity = self.i_downsample(identity) | |
| #add identity | |
| x+=identity | |
| x=self.relu(x) | |
| return x | |
| class Conv2dSame(torch.nn.Conv2d): | |
| def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int: | |
| return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| ih, iw = x.size()[-2:] | |
| pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0]) | |
| pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1]) | |
| if pad_h > 0 or pad_w > 0: | |
| x = F.pad( | |
| x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] | |
| ) | |
| return F.conv2d( | |
| x, | |
| self.weight, | |
| self.bias, | |
| self.stride, | |
| self.padding, | |
| self.dilation, | |
| self.groups, | |
| ) | |
| class ResNet(nn.Module): | |
| def __init__(self, ResBlock, layer_list, num_classes, num_channels=3): | |
| super(ResNet, self).__init__() | |
| self.in_channels = 64 | |
| self.conv_layer_s2_same = Conv2dSame(num_channels, 64, 7, stride=2, groups=1, bias=False) | |
| self.batch_norm1 = nn.BatchNorm2d(64, eps=0.001, momentum=0.99) | |
| self.relu = nn.ReLU() | |
| self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2) | |
| self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64, stride=1) | |
| self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2) | |
| self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2) | |
| self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2) | |
| self.avgpool = nn.AdaptiveAvgPool2d((1,1)) | |
| self.fc1 = nn.Linear(512*ResBlock.expansion, 512) | |
| self.relu1 = nn.ReLU() | |
| self.fc2 = nn.Linear(512, num_classes) | |
| def extract_features(self, x): | |
| x = self.relu(self.batch_norm1(self.conv_layer_s2_same(x))) | |
| x = self.max_pool(x) | |
| # print(x.shape) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = self.avgpool(x) | |
| x = x.reshape(x.shape[0], -1) | |
| x = self.fc1(x) | |
| return x | |
| def forward(self, x): | |
| x = self.extract_features(x) | |
| x = self.relu1(x) | |
| x = self.fc2(x) | |
| return x | |
| def _make_layer(self, ResBlock, blocks, planes, stride=1): | |
| ii_downsample = None | |
| layers = [] | |
| if stride != 1 or self.in_channels != planes*ResBlock.expansion: | |
| ii_downsample = nn.Sequential( | |
| nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride, bias=False, padding=0), | |
| nn.BatchNorm2d(planes*ResBlock.expansion, eps=0.001, momentum=0.99) | |
| ) | |
| layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride)) | |
| self.in_channels = planes*ResBlock.expansion | |
| for i in range(blocks-1): | |
| layers.append(ResBlock(self.in_channels, planes)) | |
| return nn.Sequential(*layers) | |
| def ResNet50(num_classes, channels=3): | |
| return ResNet(Bottleneck, [3,4,6,3], num_classes, channels) | |
| class LSTMPyTorch(nn.Module): | |
| def __init__(self): | |
| super(LSTMPyTorch, self).__init__() | |
| self.lstm1 = nn.LSTM(input_size=512, hidden_size=512, batch_first=True, bidirectional=False) | |
| self.lstm2 = nn.LSTM(input_size=512, hidden_size=256, batch_first=True, bidirectional=False) | |
| self.fc = nn.Linear(256, 7) | |
| self.softmax = nn.Softmax(dim=1) | |
| def forward(self, x): | |
| x, _ = self.lstm1(x) | |
| x, _ = self.lstm2(x) | |
| x = self.fc(x[:, -1, :]) | |
| x = self.softmax(x) | |
| return x |