Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- model/___init__.py +0 -0
- model/app_utils.py +174 -0
- model/authors.py +34 -0
- model/config.py +49 -0
- model/description.py +27 -0
- model/face_utils.py +68 -0
- model/model.py +64 -0
- model/model_architectures.py +150 -0
model/___init__.py
ADDED
File without changes
|
model/app_utils.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: app_utils.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module contains utility functions for facial expression recognition application.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
import mediapipe as mp
|
11 |
+
from PIL import Image
|
12 |
+
import cv2
|
13 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
14 |
+
|
15 |
+
# Importing necessary components for the Gradio app
|
16 |
+
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
|
17 |
+
from app.face_utils import get_box, display_info
|
18 |
+
from app.config import DICT_EMO, config_data
|
19 |
+
from app.plot import statistics_plot
|
20 |
+
|
21 |
+
mp_face_mesh = mp.solutions.face_mesh
|
22 |
+
|
23 |
+
|
24 |
+
def preprocess_image_and_predict(inp):
|
25 |
+
inp = np.array(inp)
|
26 |
+
|
27 |
+
if inp is None:
|
28 |
+
return None, None, None
|
29 |
+
|
30 |
+
try:
|
31 |
+
h, w = inp.shape[:2]
|
32 |
+
except Exception:
|
33 |
+
return None, None, None
|
34 |
+
|
35 |
+
with mp_face_mesh.FaceMesh(
|
36 |
+
max_num_faces=1,
|
37 |
+
refine_landmarks=False,
|
38 |
+
min_detection_confidence=0.5,
|
39 |
+
min_tracking_confidence=0.5,
|
40 |
+
) as face_mesh:
|
41 |
+
results = face_mesh.process(inp)
|
42 |
+
if results.multi_face_landmarks:
|
43 |
+
for fl in results.multi_face_landmarks:
|
44 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
45 |
+
cur_face = inp[startY:endY, startX:endX]
|
46 |
+
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
47 |
+
with torch.no_grad():
|
48 |
+
prediction = (
|
49 |
+
torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
|
50 |
+
.detach()
|
51 |
+
.numpy()[0]
|
52 |
+
)
|
53 |
+
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
54 |
+
grayscale_cam = cam(input_tensor=cur_face_n)
|
55 |
+
grayscale_cam = grayscale_cam[0, :]
|
56 |
+
cur_face_hm = cv2.resize(cur_face,(224,224))
|
57 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
58 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
|
59 |
+
|
60 |
+
return cur_face, heatmap, confidences
|
61 |
+
|
62 |
+
else:
|
63 |
+
return None, None, None
|
64 |
+
|
65 |
+
def preprocess_video_and_predict(video):
|
66 |
+
|
67 |
+
cap = cv2.VideoCapture(video)
|
68 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
69 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
70 |
+
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
71 |
+
|
72 |
+
path_save_video_face = 'result_face.mp4'
|
73 |
+
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
74 |
+
|
75 |
+
path_save_video_hm = 'result_hm.mp4'
|
76 |
+
vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
77 |
+
|
78 |
+
lstm_features = []
|
79 |
+
count_frame = 1
|
80 |
+
count_face = 0
|
81 |
+
probs = []
|
82 |
+
frames = []
|
83 |
+
last_output = None
|
84 |
+
last_heatmap = None
|
85 |
+
cur_face = None
|
86 |
+
|
87 |
+
with mp_face_mesh.FaceMesh(
|
88 |
+
max_num_faces=1,
|
89 |
+
refine_landmarks=False,
|
90 |
+
min_detection_confidence=0.5,
|
91 |
+
min_tracking_confidence=0.5) as face_mesh:
|
92 |
+
|
93 |
+
while cap.isOpened():
|
94 |
+
_, frame = cap.read()
|
95 |
+
if frame is None: break
|
96 |
+
|
97 |
+
frame_copy = frame.copy()
|
98 |
+
frame_copy.flags.writeable = False
|
99 |
+
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
100 |
+
results = face_mesh.process(frame_copy)
|
101 |
+
frame_copy.flags.writeable = True
|
102 |
+
|
103 |
+
if results.multi_face_landmarks:
|
104 |
+
for fl in results.multi_face_landmarks:
|
105 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
106 |
+
cur_face = frame_copy[startY:endY, startX: endX]
|
107 |
+
|
108 |
+
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
|
109 |
+
cur_face_copy = pth_processing(Image.fromarray(cur_face))
|
110 |
+
with torch.no_grad():
|
111 |
+
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
|
112 |
+
|
113 |
+
grayscale_cam = cam(input_tensor=cur_face_copy)
|
114 |
+
grayscale_cam = grayscale_cam[0, :]
|
115 |
+
cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
|
116 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
117 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
|
118 |
+
last_heatmap = heatmap
|
119 |
+
|
120 |
+
if len(lstm_features) == 0:
|
121 |
+
lstm_features = [features]*10
|
122 |
+
else:
|
123 |
+
lstm_features = lstm_features[1:] + [features]
|
124 |
+
|
125 |
+
lstm_f = torch.from_numpy(np.vstack(lstm_features))
|
126 |
+
lstm_f = torch.unsqueeze(lstm_f, 0)
|
127 |
+
with torch.no_grad():
|
128 |
+
output = pth_model_dynamic(lstm_f).detach().numpy()
|
129 |
+
last_output = output
|
130 |
+
|
131 |
+
if count_face == 0:
|
132 |
+
count_face += 1
|
133 |
+
|
134 |
+
else:
|
135 |
+
if last_output is not None:
|
136 |
+
output = last_output
|
137 |
+
heatmap = last_heatmap
|
138 |
+
|
139 |
+
elif last_output is None:
|
140 |
+
output = np.empty((1, 7))
|
141 |
+
output[:] = np.nan
|
142 |
+
|
143 |
+
probs.append(output[0])
|
144 |
+
frames.append(count_frame)
|
145 |
+
else:
|
146 |
+
if last_output is not None:
|
147 |
+
lstm_features = []
|
148 |
+
empty = np.empty((7))
|
149 |
+
empty[:] = np.nan
|
150 |
+
probs.append(empty)
|
151 |
+
frames.append(count_frame)
|
152 |
+
|
153 |
+
if cur_face is not None:
|
154 |
+
heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
|
155 |
+
|
156 |
+
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
|
157 |
+
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
|
158 |
+
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
|
159 |
+
vid_writer_face.write(cur_face)
|
160 |
+
vid_writer_hm.write(heatmap_f)
|
161 |
+
|
162 |
+
count_frame += 1
|
163 |
+
if count_face != 0:
|
164 |
+
count_face += 1
|
165 |
+
|
166 |
+
vid_writer_face.release()
|
167 |
+
vid_writer_hm.release()
|
168 |
+
|
169 |
+
stat = statistics_plot(frames, probs)
|
170 |
+
|
171 |
+
if not stat:
|
172 |
+
return None, None, None, None
|
173 |
+
|
174 |
+
return video, path_save_video_face, path_save_video_hm, stat
|
model/authors.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: authors.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: About the authors.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
AUTHORS = """
|
10 |
+
Authors: [Elena Ryumina](https://github.com/ElenaRyumina), [Dmitry Ryumin](https://github.com/DmitryRyumin), [Denis Dresvyanskiy](https://www.uni-ulm.de/en/nt/staff/research-assistants/dresvyanskiy/), [Maxim Markitantov](https://hci.nw.ru/en/employees/10) and [Alexey Karpov](https://hci.nw.ru/en/employees/1)
|
11 |
+
|
12 |
+
Authorship contribution:
|
13 |
+
|
14 |
+
App developers: ``Elena Ryumina`` and ``Dmitry Ryumin``
|
15 |
+
|
16 |
+
Methodology developers: ``Elena Ryumina``, ``Denis Dresvyanskiy`` and ``Alexey Karpov``
|
17 |
+
|
18 |
+
Model developer: ``Elena Ryumina``
|
19 |
+
|
20 |
+
TensorFlow to PyTorch model converters: ``Maxim Markitantov`` and ``Elena Ryumina``
|
21 |
+
|
22 |
+
Citation
|
23 |
+
|
24 |
+
If you are using EMO-AffectNetModel in your research, please consider to cite research [paper](https://www.sciencedirect.com/science/article/pii/S0925231222012656). Here is an example of BibTeX entry:
|
25 |
+
|
26 |
+
<div class="highlight highlight-text-bibtex notranslate position-relative overflow-auto" dir="auto"><pre><span class="pl-k">@article</span>{<span class="pl-en">RYUMINA2022</span>,
|
27 |
+
<span class="pl-s">title</span> = <span class="pl-s"><span class="pl-pds">{</span>In Search of a Robust Facial Expressions Recognition Model: A Large-Scale Visual Cross-Corpus Study<span class="pl-pds">}</span></span>,
|
28 |
+
<span class="pl-s">author</span> = <span class="pl-s"><span class="pl-pds">{</span>Elena Ryumina and Denis Dresvyanskiy and Alexey Karpov<span class="pl-pds">}</span></span>,
|
29 |
+
<span class="pl-s">journal</span> = <span class="pl-s"><span class="pl-pds">{</span>Neurocomputing<span class="pl-pds">}</span></span>,
|
30 |
+
<span class="pl-s">year</span> = <span class="pl-s"><span class="pl-pds">{</span>2022<span class="pl-pds">}</span></span>,
|
31 |
+
<span class="pl-s">doi</span> = <span class="pl-s"><span class="pl-pds">{</span>10.1016/j.neucom.2022.10.013<span class="pl-pds">}</span></span>,
|
32 |
+
<span class="pl-s">url</span> = <span class="pl-s"><span class="pl-pds">{</span>https://www.sciencedirect.com/science/article/pii/S0925231222012656<span class="pl-pds">}</span></span>,
|
33 |
+
}</div>
|
34 |
+
"""
|
model/config.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: config.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: Configuration file.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import toml
|
9 |
+
from typing import Dict
|
10 |
+
from types import SimpleNamespace
|
11 |
+
|
12 |
+
|
13 |
+
def flatten_dict(prefix: str, d: Dict) -> Dict:
|
14 |
+
result = {}
|
15 |
+
|
16 |
+
for k, v in d.items():
|
17 |
+
if isinstance(v, dict):
|
18 |
+
result.update(flatten_dict(f"{prefix}{k}_", v))
|
19 |
+
else:
|
20 |
+
result[f"{prefix}{k}"] = v
|
21 |
+
|
22 |
+
return result
|
23 |
+
|
24 |
+
|
25 |
+
config = toml.load("config.toml")
|
26 |
+
|
27 |
+
config_data = flatten_dict("", config)
|
28 |
+
|
29 |
+
config_data = SimpleNamespace(**config_data)
|
30 |
+
|
31 |
+
DICT_EMO = {
|
32 |
+
0: "Neutral",
|
33 |
+
1: "Happiness",
|
34 |
+
2: "Sadness",
|
35 |
+
3: "Surprise",
|
36 |
+
4: "Fear",
|
37 |
+
5: "Disgust",
|
38 |
+
6: "Anger",
|
39 |
+
}
|
40 |
+
|
41 |
+
COLORS = {
|
42 |
+
0: 'blue',
|
43 |
+
1: 'orange',
|
44 |
+
2: 'green',
|
45 |
+
3: 'red',
|
46 |
+
4: 'purple',
|
47 |
+
5: 'brown',
|
48 |
+
6: 'pink'
|
49 |
+
}
|
model/description.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: description.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: Project description for the Gradio app.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
# Importing necessary components for the Gradio app
|
9 |
+
from app.config import config_data
|
10 |
+
|
11 |
+
DESCRIPTION_STATIC = f"""\
|
12 |
+
# Static Facial Expression Recognition
|
13 |
+
<div class="app-flex-container">
|
14 |
+
<img src="https://img.shields.io/badge/version-v{config_data.APP_VERSION}-rc0" alt="Version">
|
15 |
+
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition&countColor=%23263759&style=flat" /></a>
|
16 |
+
<a href="https://paperswithcode.com/paper/in-search-of-a-robust-facial-expressions"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/in-search-of-a-robust-facial-expressions/facial-expression-recognition-on-affectnet" /></a>
|
17 |
+
</div>
|
18 |
+
"""
|
19 |
+
|
20 |
+
DESCRIPTION_DYNAMIC = f"""\
|
21 |
+
# Dynamic Facial Expression Recognition
|
22 |
+
<div class="app-flex-container">
|
23 |
+
<img src="https://img.shields.io/badge/version-v{config_data.APP_VERSION}-rc0" alt="Version">
|
24 |
+
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition&countColor=%23263759&style=flat" /></a>
|
25 |
+
<a href="https://paperswithcode.com/paper/in-search-of-a-robust-facial-expressions"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/in-search-of-a-robust-facial-expressions/facial-expression-recognition-on-affectnet" /></a>
|
26 |
+
</div>
|
27 |
+
"""
|
model/face_utils.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: face_utils.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module contains utility functions related to facial landmarks and image processing.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import math
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
|
13 |
+
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
|
14 |
+
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
|
15 |
+
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
|
16 |
+
return x_px, y_px
|
17 |
+
|
18 |
+
|
19 |
+
def get_box(fl, w, h):
|
20 |
+
idx_to_coors = {}
|
21 |
+
for idx, landmark in enumerate(fl.landmark):
|
22 |
+
landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)
|
23 |
+
if landmark_px:
|
24 |
+
idx_to_coors[idx] = landmark_px
|
25 |
+
|
26 |
+
x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
|
27 |
+
y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
|
28 |
+
endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
|
29 |
+
endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])
|
30 |
+
|
31 |
+
(startX, startY) = (max(0, x_min), max(0, y_min))
|
32 |
+
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
33 |
+
|
34 |
+
return startX, startY, endX, endY
|
35 |
+
|
36 |
+
def display_info(img, text, margin=1.0, box_scale=1.0):
|
37 |
+
img_copy = img.copy()
|
38 |
+
img_h, img_w, _ = img_copy.shape
|
39 |
+
line_width = int(min(img_h, img_w) * 0.001)
|
40 |
+
thickness = max(int(line_width / 3), 1)
|
41 |
+
|
42 |
+
font_face = cv2.FONT_HERSHEY_SIMPLEX
|
43 |
+
font_color = (0, 0, 0)
|
44 |
+
font_scale = thickness / 1.5
|
45 |
+
|
46 |
+
t_w, t_h = cv2.getTextSize(text, font_face, font_scale, None)[0]
|
47 |
+
|
48 |
+
margin_n = int(t_h * margin)
|
49 |
+
sub_img = img_copy[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
|
50 |
+
img_w - t_w - margin_n - int(2 * t_h * box_scale): img_w - margin_n]
|
51 |
+
|
52 |
+
white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255
|
53 |
+
|
54 |
+
img_copy[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
|
55 |
+
img_w - t_w - margin_n - int(2 * t_h * box_scale):img_w - margin_n] = cv2.addWeighted(sub_img, 0.5, white_rect, .5, 1.0)
|
56 |
+
|
57 |
+
cv2.putText(img=img_copy,
|
58 |
+
text=text,
|
59 |
+
org=(img_w - t_w - margin_n - int(2 * t_h * box_scale) // 2,
|
60 |
+
0 + margin_n + t_h + int(2 * t_h * box_scale) // 2),
|
61 |
+
fontFace=font_face,
|
62 |
+
fontScale=font_scale,
|
63 |
+
color=font_color,
|
64 |
+
thickness=thickness,
|
65 |
+
lineType=cv2.LINE_AA,
|
66 |
+
bottomLeftOrigin=False)
|
67 |
+
|
68 |
+
return img_copy
|
model/model.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: model.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module provides functions for loading and processing a pre-trained deep learning model
|
5 |
+
for facial expression recognition.
|
6 |
+
License: MIT License
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import requests
|
11 |
+
from PIL import Image
|
12 |
+
from torchvision import transforms
|
13 |
+
from pytorch_grad_cam import GradCAM
|
14 |
+
|
15 |
+
# Importing necessary components for the Gradio app
|
16 |
+
from app.config import config_data
|
17 |
+
from app.model_architectures import ResNet50, LSTMPyTorch
|
18 |
+
|
19 |
+
|
20 |
+
def load_model(model_url, model_path):
|
21 |
+
try:
|
22 |
+
with requests.get(model_url, stream=True) as response:
|
23 |
+
with open(model_path, "wb") as file:
|
24 |
+
for chunk in response.iter_content(chunk_size=8192):
|
25 |
+
file.write(chunk)
|
26 |
+
return model_path
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error loading model: {e}")
|
29 |
+
return None
|
30 |
+
|
31 |
+
path_static = load_model(config_data.model_static_url, config_data.model_static_path)
|
32 |
+
pth_model_static = ResNet50(7, channels=3)
|
33 |
+
pth_model_static.load_state_dict(torch.load(path_static))
|
34 |
+
pth_model_static.eval()
|
35 |
+
|
36 |
+
path_dynamic = load_model(config_data.model_dynamic_url, config_data.model_dynamic_path)
|
37 |
+
pth_model_dynamic = LSTMPyTorch()
|
38 |
+
pth_model_dynamic.load_state_dict(torch.load(path_dynamic))
|
39 |
+
pth_model_dynamic.eval()
|
40 |
+
|
41 |
+
target_layers = [pth_model_static.layer4]
|
42 |
+
cam = GradCAM(model=pth_model_static, target_layers=target_layers)
|
43 |
+
|
44 |
+
def pth_processing(fp):
|
45 |
+
class PreprocessInput(torch.nn.Module):
|
46 |
+
def init(self):
|
47 |
+
super(PreprocessInput, self).init()
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
x = x.to(torch.float32)
|
51 |
+
x = torch.flip(x, dims=(0,))
|
52 |
+
x[0, :, :] -= 91.4953
|
53 |
+
x[1, :, :] -= 103.8827
|
54 |
+
x[2, :, :] -= 131.0912
|
55 |
+
return x
|
56 |
+
|
57 |
+
def get_img_torch(img, target_size=(224, 224)):
|
58 |
+
transform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()])
|
59 |
+
img = img.resize(target_size, Image.Resampling.NEAREST)
|
60 |
+
img = transform(img)
|
61 |
+
img = torch.unsqueeze(img, 0)
|
62 |
+
return img
|
63 |
+
|
64 |
+
return get_img_torch(fp)
|
model/model_architectures.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: model.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module provides model architectures.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import math
|
12 |
+
|
13 |
+
class Bottleneck(nn.Module):
|
14 |
+
expansion = 4
|
15 |
+
def __init__(self, in_channels, out_channels, i_downsample=None, stride=1):
|
16 |
+
super(Bottleneck, self).__init__()
|
17 |
+
|
18 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias=False)
|
19 |
+
self.batch_norm1 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding='same', bias=False)
|
22 |
+
self.batch_norm2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)
|
23 |
+
|
24 |
+
self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0, bias=False)
|
25 |
+
self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion, eps=0.001, momentum=0.99)
|
26 |
+
|
27 |
+
self.i_downsample = i_downsample
|
28 |
+
self.stride = stride
|
29 |
+
self.relu = nn.ReLU()
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
identity = x.clone()
|
33 |
+
x = self.relu(self.batch_norm1(self.conv1(x)))
|
34 |
+
|
35 |
+
x = self.relu(self.batch_norm2(self.conv2(x)))
|
36 |
+
|
37 |
+
x = self.conv3(x)
|
38 |
+
x = self.batch_norm3(x)
|
39 |
+
|
40 |
+
#downsample if needed
|
41 |
+
if self.i_downsample is not None:
|
42 |
+
identity = self.i_downsample(identity)
|
43 |
+
#add identity
|
44 |
+
x+=identity
|
45 |
+
x=self.relu(x)
|
46 |
+
|
47 |
+
return x
|
48 |
+
|
49 |
+
class Conv2dSame(torch.nn.Conv2d):
|
50 |
+
|
51 |
+
def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int:
|
52 |
+
return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)
|
53 |
+
|
54 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
55 |
+
ih, iw = x.size()[-2:]
|
56 |
+
|
57 |
+
pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])
|
58 |
+
pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])
|
59 |
+
|
60 |
+
if pad_h > 0 or pad_w > 0:
|
61 |
+
x = F.pad(
|
62 |
+
x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
|
63 |
+
)
|
64 |
+
return F.conv2d(
|
65 |
+
x,
|
66 |
+
self.weight,
|
67 |
+
self.bias,
|
68 |
+
self.stride,
|
69 |
+
self.padding,
|
70 |
+
self.dilation,
|
71 |
+
self.groups,
|
72 |
+
)
|
73 |
+
|
74 |
+
class ResNet(nn.Module):
|
75 |
+
def __init__(self, ResBlock, layer_list, num_classes, num_channels=3):
|
76 |
+
super(ResNet, self).__init__()
|
77 |
+
self.in_channels = 64
|
78 |
+
|
79 |
+
self.conv_layer_s2_same = Conv2dSame(num_channels, 64, 7, stride=2, groups=1, bias=False)
|
80 |
+
self.batch_norm1 = nn.BatchNorm2d(64, eps=0.001, momentum=0.99)
|
81 |
+
self.relu = nn.ReLU()
|
82 |
+
self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2)
|
83 |
+
|
84 |
+
self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64, stride=1)
|
85 |
+
self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2)
|
86 |
+
self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2)
|
87 |
+
self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2)
|
88 |
+
|
89 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
|
90 |
+
self.fc1 = nn.Linear(512*ResBlock.expansion, 512)
|
91 |
+
self.relu1 = nn.ReLU()
|
92 |
+
self.fc2 = nn.Linear(512, num_classes)
|
93 |
+
|
94 |
+
def extract_features(self, x):
|
95 |
+
x = self.relu(self.batch_norm1(self.conv_layer_s2_same(x)))
|
96 |
+
x = self.max_pool(x)
|
97 |
+
# print(x.shape)
|
98 |
+
x = self.layer1(x)
|
99 |
+
x = self.layer2(x)
|
100 |
+
x = self.layer3(x)
|
101 |
+
x = self.layer4(x)
|
102 |
+
|
103 |
+
x = self.avgpool(x)
|
104 |
+
x = x.reshape(x.shape[0], -1)
|
105 |
+
x = self.fc1(x)
|
106 |
+
return x
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = self.extract_features(x)
|
110 |
+
x = self.relu1(x)
|
111 |
+
x = self.fc2(x)
|
112 |
+
return x
|
113 |
+
|
114 |
+
def _make_layer(self, ResBlock, blocks, planes, stride=1):
|
115 |
+
ii_downsample = None
|
116 |
+
layers = []
|
117 |
+
|
118 |
+
if stride != 1 or self.in_channels != planes*ResBlock.expansion:
|
119 |
+
ii_downsample = nn.Sequential(
|
120 |
+
nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride, bias=False, padding=0),
|
121 |
+
nn.BatchNorm2d(planes*ResBlock.expansion, eps=0.001, momentum=0.99)
|
122 |
+
)
|
123 |
+
|
124 |
+
layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride))
|
125 |
+
self.in_channels = planes*ResBlock.expansion
|
126 |
+
|
127 |
+
for i in range(blocks-1):
|
128 |
+
layers.append(ResBlock(self.in_channels, planes))
|
129 |
+
|
130 |
+
return nn.Sequential(*layers)
|
131 |
+
|
132 |
+
def ResNet50(num_classes, channels=3):
|
133 |
+
return ResNet(Bottleneck, [3,4,6,3], num_classes, channels)
|
134 |
+
|
135 |
+
|
136 |
+
class LSTMPyTorch(nn.Module):
|
137 |
+
def __init__(self):
|
138 |
+
super(LSTMPyTorch, self).__init__()
|
139 |
+
|
140 |
+
self.lstm1 = nn.LSTM(input_size=512, hidden_size=512, batch_first=True, bidirectional=False)
|
141 |
+
self.lstm2 = nn.LSTM(input_size=512, hidden_size=256, batch_first=True, bidirectional=False)
|
142 |
+
self.fc = nn.Linear(256, 7)
|
143 |
+
self.softmax = nn.Softmax(dim=1)
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
x, _ = self.lstm1(x)
|
147 |
+
x, _ = self.lstm2(x)
|
148 |
+
x = self.fc(x[:, -1, :])
|
149 |
+
x = self.softmax(x)
|
150 |
+
return x
|