JiantaoLin
initial commit
98bebfc
import torch
import numpy as np
from PIL import Image
import pymeshlab
import pymeshlab as ml
from pymeshlab import PercentageValue
from pytorch3d.renderer import TexturesVertex
from pytorch3d.structures import Meshes
import torch
import torch.nn.functional as F
from typing import List, Tuple
from PIL import Image
import trimesh
EPSILON = 1e-8
def load_mesh_with_trimesh(file_name, file_type=None):
import trimesh
mesh: trimesh.Trimesh = trimesh.load(file_name, file_type=file_type)
if isinstance(mesh, trimesh.Scene):
assert len(mesh.geometry) > 0
# save to obj first and load again to avoid offset issue
from io import BytesIO
with BytesIO() as f:
mesh.export(f, file_type="obj")
f.seek(0)
mesh = trimesh.load(f, file_type="obj")
if isinstance(mesh, trimesh.Scene):
# we lose texture information here
mesh = trimesh.util.concatenate(
tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
for g in mesh.geometry.values()))
assert isinstance(mesh, trimesh.Trimesh)
vertices = torch.from_numpy(mesh.vertices).T
faces = torch.from_numpy(mesh.faces).T
colors = None
if mesh.visual is not None:
if hasattr(mesh.visual, 'vertex_colors'):
colors = torch.from_numpy(mesh.visual.vertex_colors)[..., :3].T / 255.
if colors is None:
colors = torch.ones_like(vertices) * 0.5
return vertices, faces, colors
def meshlab_mesh_to_py3dmesh(mesh: pymeshlab.Mesh) -> Meshes:
verts = torch.from_numpy(mesh.vertex_matrix()).float()
faces = torch.from_numpy(mesh.face_matrix()).long()
colors = torch.from_numpy(mesh.vertex_color_matrix()[..., :3]).float()
textures = TexturesVertex(verts_features=[colors])
return Meshes(verts=[verts], faces=[faces], textures=textures)
def py3dmesh_to_meshlab_mesh(meshes: Meshes) -> pymeshlab.Mesh:
colors_in = F.pad(meshes.textures.verts_features_packed().cpu().float(), [0,1], value=1).numpy().astype(np.float64)
m1 = pymeshlab.Mesh(
vertex_matrix=meshes.verts_packed().cpu().float().numpy().astype(np.float64),
face_matrix=meshes.faces_packed().cpu().long().numpy().astype(np.int32),
v_normals_matrix=meshes.verts_normals_packed().cpu().float().numpy().astype(np.float64),
v_color_matrix=colors_in)
return m1
def to_pyml_mesh(vertices,faces):
m1 = pymeshlab.Mesh(
vertex_matrix=vertices.cpu().float().numpy().astype(np.float64),
face_matrix=faces.cpu().long().numpy().astype(np.int32),
)
return m1
def to_py3d_mesh(vertices, faces, normals=None):
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh.textures import TexturesVertex
mesh = Meshes(verts=[vertices], faces=[faces], textures=None)
if normals is None:
normals = mesh.verts_normals_packed()
# set normals as vertext colors
mesh.textures = TexturesVertex(verts_features=[normals / 2 + 0.5])
return mesh
def from_py3d_mesh(mesh):
return mesh.verts_list()[0], mesh.faces_list()[0], mesh.textures.verts_features_packed()
def rotate_normalmap_by_angle(normal_map: np.ndarray, angle: float):
"""
rotate along y-axis
normal_map: np.array, shape=(H, W, 3) in [-1, 1]
angle: float, in degree
"""
angle = angle / 180 * np.pi
R = np.array([[np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)]])
return np.dot(normal_map.reshape(-1, 3), R.T).reshape(normal_map.shape)
# from view coord to front view world coord
def rotate_normals(normal_pils, return_types='np', rotate_direction=1) -> np.ndarray: # [0, 255]
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
# rotate normal
normal_np = np.array(rgba_normal)[:, :, :3] / 255 # in [-1, 1]
alpha_np = np.array(rgba_normal)[:, :, 3] / 255 # in [0, 1]
normal_np = normal_np * 2 - 1
normal_np = rotate_normalmap_by_angle(normal_np, rotate_direction * idx * (360 / n_views))
normal_np = (normal_np + 1) / 2
normal_np = normal_np * alpha_np[..., None] # make bg black
rgba_normal_np = np.concatenate([normal_np * 255, alpha_np[:, :, None] * 255] , axis=-1)
if return_types == 'np':
ret.append(rgba_normal_np)
elif return_types == 'pil':
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8)))
else:
raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}")
return ret
def rotate_normalmap_by_angle_torch(normal_map, angle):
"""
rotate along y-axis
normal_map: torch.Tensor, shape=(H, W, 3) in [-1, 1], device='cuda'
angle: float, in degree
"""
angle = torch.tensor(angle / 180 * np.pi).to(normal_map)
R = torch.tensor([[torch.cos(angle), 0, torch.sin(angle)],
[0, 1, 0],
[-torch.sin(angle), 0, torch.cos(angle)]]).to(normal_map)
return torch.matmul(normal_map.view(-1, 3), R.T).view(normal_map.shape)
def do_rotate(rgba_normal, angle):
rgba_normal = torch.from_numpy(rgba_normal).float().cuda() / 255
rotated_normal_tensor = rotate_normalmap_by_angle_torch(rgba_normal[..., :3] * 2 - 1, angle)
rotated_normal_tensor = (rotated_normal_tensor + 1) / 2
rotated_normal_tensor = rotated_normal_tensor * rgba_normal[:, :, [3]] # make bg black
rgba_normal_np = torch.cat([rotated_normal_tensor * 255, rgba_normal[:, :, [3]] * 255], dim=-1).cpu().numpy()
return rgba_normal_np
def rotate_normals_torch(normal_pils, return_types='np', rotate_direction=1):
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
# rotate normal
angle = rotate_direction * idx * (360 / n_views)
rgba_normal_np = do_rotate(np.array(rgba_normal), angle)
if return_types == 'np':
ret.append(rgba_normal_np)
elif return_types == 'pil':
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8)))
else:
raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}")
return ret
def change_bkgd(img_pils, new_bkgd=(0., 0., 0.)):
ret = []
new_bkgd = np.array(new_bkgd).reshape(1, 1, 3)
for rgba_img in img_pils:
img_np = np.array(rgba_img)[:, :, :3] / 255
alpha_np = np.array(rgba_img)[:, :, 3] / 255
ori_bkgd = img_np[:1, :1]
# color = ori_color * alpha + bkgd * (1-alpha)
# ori_color = (color - bkgd * (1-alpha)) / alpha
alpha_np_clamp = np.clip(alpha_np, 1e-6, 1) # avoid divide by zero
ori_img_np = (img_np - ori_bkgd * (1 - alpha_np[..., None])) / alpha_np_clamp[..., None]
img_np = np.where(alpha_np[..., None] > 0.05, ori_img_np * alpha_np[..., None] + new_bkgd * (1 - alpha_np[..., None]), new_bkgd)
rgba_img_np = np.concatenate([img_np * 255, alpha_np[..., None] * 255], axis=-1)
ret.append(Image.fromarray(rgba_img_np.astype(np.uint8)))
return ret
def change_bkgd_to_normal(normal_pils) -> List[Image.Image]:
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
# calcuate background normal
target_bkgd = rotate_normalmap_by_angle(np.array([[[0., 0., 1.]]]), idx * (360 / n_views))
normal_np = np.array(rgba_normal)[:, :, :3] / 255 # in [-1, 1]
alpha_np = np.array(rgba_normal)[:, :, 3] / 255 # in [0, 1]
normal_np = normal_np * 2 - 1
old_bkgd = normal_np[:1,:1]
normal_np[alpha_np > 0.05] = (normal_np[alpha_np > 0.05] - old_bkgd * (1 - alpha_np[alpha_np > 0.05][..., None])) / alpha_np[alpha_np > 0.05][..., None]
normal_np = normal_np * alpha_np[..., None] + target_bkgd * (1 - alpha_np[..., None])
normal_np = (normal_np + 1) / 2
rgba_normal_np = np.concatenate([normal_np * 255, alpha_np[..., None] * 255] , axis=-1)
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8)))
return ret
def fix_vert_color_glb(mesh_path):
from pygltflib import GLTF2, Material, PbrMetallicRoughness
obj1 = GLTF2().load(mesh_path)
obj1.meshes[0].primitives[0].material = 0
obj1.materials.append(Material(
pbrMetallicRoughness = PbrMetallicRoughness(
baseColorFactor = [1.0, 1.0, 1.0, 1.0],
metallicFactor = 0.,
roughnessFactor = 1.0,
),
emissiveFactor = [0.0, 0.0, 0.0],
doubleSided = True,
))
obj1.save(mesh_path)
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}"
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
def save_glb_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, dist=3.5, azim_offset=180, resolution=512, fov_in_degrees=1 / 1.15, cam_type="ortho", view_padding=60, export_video=True) -> Tuple[str, str]:
import time
if '.' in save_mesh_prefix:
save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1])
if with_timestamp:
save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}"
ret_mesh = save_mesh_prefix + ".glb"
# optimizied version
save_py3dmesh_with_trimesh_fast(meshes, ret_mesh)
return ret_mesh, None
def simple_clean_mesh(pyml_mesh: ml.Mesh, apply_smooth=True, stepsmoothnum=1, apply_sub_divide=False, sub_divide_threshold=0.25):
ms = ml.MeshSet()
ms.add_mesh(pyml_mesh, "cube_mesh")
if apply_smooth:
ms.apply_filter("apply_coord_laplacian_smoothing", stepsmoothnum=stepsmoothnum, cotangentweight=False)
if apply_sub_divide: # 5s, slow
ms.apply_filter("meshing_repair_non_manifold_vertices")
ms.apply_filter("meshing_repair_non_manifold_edges", method='Remove Faces')
ms.apply_filter("meshing_surface_subdivision_loop", iterations=2, threshold=PercentageValue(sub_divide_threshold))
return meshlab_mesh_to_py3dmesh(ms.current_mesh())
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"):
new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device)
imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255
img_nps = imgs[..., :3]
alpha_nps = imgs[..., 3]
ori_bkgds = img_nps[:, :1, :1]
alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1)
ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1)
ori_img_nps = torch.clamp(ori_img_nps, 0, 1)
img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd)
rgba_img_np = torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1)
return rgba_img_np
def rotation_matrix_axis_angle(axis, angle, device='cuda'):
"""
Return the rotation matrix associated with counterclockwise rotation about
the given axis by angle degrees, using PyTorch.
"""
if type(axis) != torch.tensor:
axis = torch.tensor(axis, device=device)
axis = axis.float().to(device)
if type(angle) != torch.tensor:
angle = torch.tensor(angle, device=device)
angle = angle.float().to(device)
theta = angle * torch.pi / 180.0
axis = torch.tensor(axis, dtype=torch.float32)
if torch.dot(axis, axis) > 0:
denom = torch.sqrt(torch.dot(axis, axis))
demon = torch.where(denom == 0, torch.tensor(EPSILON).to(denom.device), denom)
axis = axis / torch.sqrt(demon)
a = torch.cos(theta / 2.0)
b, c, d = -axis[0] * torch.sin(theta / 2.0), -axis[1] * torch.sin(theta / 2.0), -axis[2] * torch.sin(theta / 2.0)
aa, bb, cc, dd = a*a, b*b, c*c, d*d
bc, ad, ac, ab, bd, cd = b*c, a*d, a*c, a*b, b*d, c*d
return torch.stack([
torch.stack([aa+bb-cc-dd, 2*(bc+ad), 2*(bd-ac)]),
torch.stack([2*(bc-ad), aa+cc-bb-dd, 2*(cd+ab)]),
torch.stack([2*(bd+ac), 2*(cd-ab), aa+dd-bb-cc])
])
else:
return torch.eye(3)
def normal_rotation_img2img_angle_axis(image, angle, axis=None, device='cuda'):
"""
Rotate an image by a given angle around a given axis using PyTorch.
Args:
image: Input Image to rotate.
angle: Rotation angle in degrees.
axis: Rotation axis as a array of 3 floats.
Returns:
Image: Rotated Image.
"""
if axis is None:
axis = [0,1,0]
axis = torch.tensor(axis, device=device)
if type(image) == Image.Image:
image_array = torch.tensor(np.array(image, dtype='float32'))
else:
image_array = image
image_array = image_array.to(device)
if type(angle) != torch.Tensor:
angle = torch.tensor(angle)
angle = angle.to(device)
if image_array.shape[2] == 4:
rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3]
else:
rgb_array = image_array
alpha_array = None
rgb_array = rgb_array / 255.0 - 0.5
rgb_array = rgb_array.permute(2, 0, 1)
rotated_tensor = apply_rotation_angle_axis(rgb_array.unsqueeze(0), axis, torch.tensor([angle], device=rgb_array.device))
rotated_array = rotated_tensor.squeeze().permute(1, 2, 0)
rotated_array = (rotated_array/2 + 0.5) * 255
if alpha_array is not None:
rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2)
rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8')
rotated_normal = Image.fromarray(rotated_array_uint8)
return rotated_normal
def normal_rotation_img2img_c2w(image, c2w, device='cuda'):
if type(image) != torch.Tensor:
image_array = torch.tensor(np.array(image, dtype='float32'))
else:
image_array = image
image_array = image_array.to(device)
if image_array.shape[2] == 4:
rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3]
else:
rgb_array = image_array
alpha_array = None
rgb_array = rgb_array / 255.0 - 0.5
rotation_matrix = c2w
rotated_tensor = transform_normals_R(rgb_array, rotation_matrix)
rotated_array = rotated_tensor.squeeze().permute(1, 2, 0)
rotated_array = (rotated_array/2 + 0.5) * 255
if alpha_array is not None:
rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2)
rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8')
rotated_normal = Image.fromarray(rotated_array_uint8)
return rotated_normal
def normal_rotation_img2img_azi_ele(image, azi, ele, device='cuda'):
"""
Rotate an image by a given angle around a given axis using PyTorch.
Args:
image: Input Image to rotate.
Returns:
Image: Rotated Image.
"""
if type(image) == Image.Image:
image_array = torch.tensor(np.array(image, dtype='float32'))
else:
image_array = image
image_array = image_array.to(device)
if type(azi) != torch.Tensor:
azi = torch.tensor(azi)
azi = azi.to(device)
if type(ele) != torch.Tensor:
ele = torch.tensor(ele)
ele = ele.to(device)
if image_array.shape[2] == 4:
rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3]
else:
rgb_array = image_array
alpha_array = None
rgb_array = rgb_array / 255.0 - 0.5
rotation_matrix = get_rotation_matrix_azi_ele(azi, ele)
rotated_tensor = transform_normals_R(rgb_array, rotation_matrix)
rotated_array = rotated_tensor.squeeze().permute(1, 2, 0)
rotated_array = (rotated_array/2 + 0.5) * 255
if alpha_array is not None:
rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2)
rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8')
rotated_normal = Image.fromarray(rotated_array_uint8)
return rotated_normal
def rotate_normal_R(image, rotation_matrix, save_addr="", device="cuda"):
"""
Rotate a normal map by a given Rotation matrix using PyTorch.
Args:
image: Input Image to rotate.
Returns:
Image: Rotated Image.
"""
if type(image) != torch.tensor:
image_array = torch.tensor(np.array(image, dtype='float32'))
else:
image_array = image
image_array = image_array.to(device)
if image_array.shape[2] == 4:
rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3]
else:
rgb_array = image_array
alpha_array = None
rgb_array = rgb_array / 255.0 - 0.5
rotated_tensor = transform_normals_R(rgb_array, rotation_matrix.to(device))
rotated_array = rotated_tensor.squeeze().permute(1, 2, 0)
rotated_array = (rotated_array/2 + 0.5) * 255
if alpha_array is not None:
rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2)
rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8')
rotated_normal = Image.fromarray(rotated_array_uint8)
if save_addr:
rotated_normal.save(save_addr)
return rotated_normal
def transform_normals_R(local_normals, rotation_matrix):
assert local_normals.shape[2] ==3 ,f'local_normals.shape[2]: {local_normals.shape[2]}. only support rgb image'
h, w = local_normals.shape[:2]
local_normals_flat = local_normals.view(-1, 3).permute(1, 0)
images_flat = local_normals_flat.unsqueeze(0)
rotation_matrices = rotation_matrix.unsqueeze(0)
rotated_images_flat = torch.bmm(rotation_matrices, images_flat)
rotated_images = rotated_images_flat.view(1, 3, h, w)
norms = torch.norm(rotated_images, p=2, dim=1, keepdim=True)
norms = torch.where(norms == 0, torch.tensor(EPSILON).to(norms.device), norms)
normalized_images = rotated_images / norms
return normalized_images
def manage_elevation_azimuth(ele_list, azi_list):
"""deal with cases when elevation > 90"""
for i in range(len(ele_list)):
elevation = ele_list[i] % 360
azimuth = azi_list[i] % 360
if elevation > 90 and elevation<=270:
# when elevation is too big,camera gets to the other side
# print(f'!!! elevation({elevation}) > 90 and <=270, set to 180-elevation, and add 180 to azimuth')
elevation = 180 - elevation
azimuth = azimuth + 180
# print(f'new elevation: {elevation}, new azimuth: {azimuth}')
elif elevation>270:
# print(f'!!! elevation({elevation}) > 270, set to elevation-360, and use original azimuth')
elevation = elevation - 360
azimuth = azimuth
# print(f'new elevation: {elevation}, new azimuth: {azimuth}')
ele_list[i] = elevation
azi_list[i] = azimuth
return ele_list, azi_list
def get_rotation_matrix_azi_ele(azimuth, elevation):
ele = elevation/180 * torch.pi
azi = azimuth/180 * torch.pi
Rz = torch.tensor([
[torch.cos(azi), 0, -torch.sin(azi)],
[0, 1, 0],
[torch.sin(azi), 0, torch.cos(azi)],
]).to(azimuth.device)
Re = torch.tensor([
[1, 0, 0],
[0, torch.cos(ele), torch.sin(ele)],
[0, -torch.sin(ele), torch.cos(ele)],
]).to(elevation.device)
return torch.matmul(Rz,Re).to(azimuth.device)
def rotate_vector(vector, axis, angle, device='cuda'):
rot_matrix = rotation_matrix_axis_angle(axis, angle)
return torch.matmul(vector.to(device).float(), rot_matrix.to(device).float())
def apply_rotation_angle_axis(image, axis, angle, device='cuda'):
"""Apply rotation to a batch of images with shape [batch_size, 3(rgb), h, w] using PyTorch.
Args:
image (torch.Tensor): Input RGB image tensor of shape [batch_size, 3, h, w]. each pixel's rgb channels refer to direction of normal (can be negative)
axis (torch.Tensor): Rotation axis of shape [3].
angle (torch.Tensor): Rotation angles in degrees, of shape [batch_size].
Returns:
torch.Tensor: Rotated image tensor of shape [batch_size, 3, h, w]. values between [-1., 1.]
"""
if not isinstance(image, torch.Tensor):
image_tensor = torch.tensor(image).to(device)
else:
image_tensor = image.to(device)
if not isinstance(axis, torch.Tensor):
axis = torch.tensor(axis)
axis = axis.to(device)
if not isinstance(angle, torch.Tensor):
angle = torch.tensor(angle)
angle = angle.to(device)
batch_size, channels, h, w = image_tensor.shape
rot_matrix = rotation_matrix_axis_angle(axis, angle)
rotation_matrices = rot_matrix.permute(2, 0, 1)
batch_size, c, h, w = image_tensor.shape
images_flat = image_tensor.view(batch_size, c, h * w)
rotated_images_flat = torch.bmm(rotation_matrices, images_flat)
rotated_images = rotated_images_flat.view(batch_size, c, h, w)
norms = torch.norm(rotated_images, p=2, dim=1, keepdim=True)
norms = torch.where(norms == 0, torch.tensor(EPSILON).to(norms.device), norms)
normalized_images = rotated_images / norms
return normalized_images