File size: 22,830 Bytes
98bebfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
import torch
import numpy as np
from PIL import Image
import pymeshlab
import pymeshlab as ml
from pymeshlab import PercentageValue
from pytorch3d.renderer import TexturesVertex
from pytorch3d.structures import Meshes
import torch
import torch.nn.functional as F
from typing import List, Tuple
from PIL import Image
import trimesh
EPSILON = 1e-8
def load_mesh_with_trimesh(file_name, file_type=None):
import trimesh
mesh: trimesh.Trimesh = trimesh.load(file_name, file_type=file_type)
if isinstance(mesh, trimesh.Scene):
assert len(mesh.geometry) > 0
# save to obj first and load again to avoid offset issue
from io import BytesIO
with BytesIO() as f:
mesh.export(f, file_type="obj")
f.seek(0)
mesh = trimesh.load(f, file_type="obj")
if isinstance(mesh, trimesh.Scene):
# we lose texture information here
mesh = trimesh.util.concatenate(
tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
for g in mesh.geometry.values()))
assert isinstance(mesh, trimesh.Trimesh)
vertices = torch.from_numpy(mesh.vertices).T
faces = torch.from_numpy(mesh.faces).T
colors = None
if mesh.visual is not None:
if hasattr(mesh.visual, 'vertex_colors'):
colors = torch.from_numpy(mesh.visual.vertex_colors)[..., :3].T / 255.
if colors is None:
colors = torch.ones_like(vertices) * 0.5
return vertices, faces, colors
def meshlab_mesh_to_py3dmesh(mesh: pymeshlab.Mesh) -> Meshes:
verts = torch.from_numpy(mesh.vertex_matrix()).float()
faces = torch.from_numpy(mesh.face_matrix()).long()
colors = torch.from_numpy(mesh.vertex_color_matrix()[..., :3]).float()
textures = TexturesVertex(verts_features=[colors])
return Meshes(verts=[verts], faces=[faces], textures=textures)
def py3dmesh_to_meshlab_mesh(meshes: Meshes) -> pymeshlab.Mesh:
colors_in = F.pad(meshes.textures.verts_features_packed().cpu().float(), [0,1], value=1).numpy().astype(np.float64)
m1 = pymeshlab.Mesh(
vertex_matrix=meshes.verts_packed().cpu().float().numpy().astype(np.float64),
face_matrix=meshes.faces_packed().cpu().long().numpy().astype(np.int32),
v_normals_matrix=meshes.verts_normals_packed().cpu().float().numpy().astype(np.float64),
v_color_matrix=colors_in)
return m1
def to_pyml_mesh(vertices,faces):
m1 = pymeshlab.Mesh(
vertex_matrix=vertices.cpu().float().numpy().astype(np.float64),
face_matrix=faces.cpu().long().numpy().astype(np.int32),
)
return m1
def to_py3d_mesh(vertices, faces, normals=None):
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh.textures import TexturesVertex
mesh = Meshes(verts=[vertices], faces=[faces], textures=None)
if normals is None:
normals = mesh.verts_normals_packed()
# set normals as vertext colors
mesh.textures = TexturesVertex(verts_features=[normals / 2 + 0.5])
return mesh
def from_py3d_mesh(mesh):
return mesh.verts_list()[0], mesh.faces_list()[0], mesh.textures.verts_features_packed()
def rotate_normalmap_by_angle(normal_map: np.ndarray, angle: float):
"""
rotate along y-axis
normal_map: np.array, shape=(H, W, 3) in [-1, 1]
angle: float, in degree
"""
angle = angle / 180 * np.pi
R = np.array([[np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)]])
return np.dot(normal_map.reshape(-1, 3), R.T).reshape(normal_map.shape)
# from view coord to front view world coord
def rotate_normals(normal_pils, return_types='np', rotate_direction=1) -> np.ndarray: # [0, 255]
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
# rotate normal
normal_np = np.array(rgba_normal)[:, :, :3] / 255 # in [-1, 1]
alpha_np = np.array(rgba_normal)[:, :, 3] / 255 # in [0, 1]
normal_np = normal_np * 2 - 1
normal_np = rotate_normalmap_by_angle(normal_np, rotate_direction * idx * (360 / n_views))
normal_np = (normal_np + 1) / 2
normal_np = normal_np * alpha_np[..., None] # make bg black
rgba_normal_np = np.concatenate([normal_np * 255, alpha_np[:, :, None] * 255] , axis=-1)
if return_types == 'np':
ret.append(rgba_normal_np)
elif return_types == 'pil':
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8)))
else:
raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}")
return ret
def rotate_normalmap_by_angle_torch(normal_map, angle):
"""
rotate along y-axis
normal_map: torch.Tensor, shape=(H, W, 3) in [-1, 1], device='cuda'
angle: float, in degree
"""
angle = torch.tensor(angle / 180 * np.pi).to(normal_map)
R = torch.tensor([[torch.cos(angle), 0, torch.sin(angle)],
[0, 1, 0],
[-torch.sin(angle), 0, torch.cos(angle)]]).to(normal_map)
return torch.matmul(normal_map.view(-1, 3), R.T).view(normal_map.shape)
def do_rotate(rgba_normal, angle):
rgba_normal = torch.from_numpy(rgba_normal).float().cuda() / 255
rotated_normal_tensor = rotate_normalmap_by_angle_torch(rgba_normal[..., :3] * 2 - 1, angle)
rotated_normal_tensor = (rotated_normal_tensor + 1) / 2
rotated_normal_tensor = rotated_normal_tensor * rgba_normal[:, :, [3]] # make bg black
rgba_normal_np = torch.cat([rotated_normal_tensor * 255, rgba_normal[:, :, [3]] * 255], dim=-1).cpu().numpy()
return rgba_normal_np
def rotate_normals_torch(normal_pils, return_types='np', rotate_direction=1):
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
# rotate normal
angle = rotate_direction * idx * (360 / n_views)
rgba_normal_np = do_rotate(np.array(rgba_normal), angle)
if return_types == 'np':
ret.append(rgba_normal_np)
elif return_types == 'pil':
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8)))
else:
raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}")
return ret
def change_bkgd(img_pils, new_bkgd=(0., 0., 0.)):
ret = []
new_bkgd = np.array(new_bkgd).reshape(1, 1, 3)
for rgba_img in img_pils:
img_np = np.array(rgba_img)[:, :, :3] / 255
alpha_np = np.array(rgba_img)[:, :, 3] / 255
ori_bkgd = img_np[:1, :1]
# color = ori_color * alpha + bkgd * (1-alpha)
# ori_color = (color - bkgd * (1-alpha)) / alpha
alpha_np_clamp = np.clip(alpha_np, 1e-6, 1) # avoid divide by zero
ori_img_np = (img_np - ori_bkgd * (1 - alpha_np[..., None])) / alpha_np_clamp[..., None]
img_np = np.where(alpha_np[..., None] > 0.05, ori_img_np * alpha_np[..., None] + new_bkgd * (1 - alpha_np[..., None]), new_bkgd)
rgba_img_np = np.concatenate([img_np * 255, alpha_np[..., None] * 255], axis=-1)
ret.append(Image.fromarray(rgba_img_np.astype(np.uint8)))
return ret
def change_bkgd_to_normal(normal_pils) -> List[Image.Image]:
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
# calcuate background normal
target_bkgd = rotate_normalmap_by_angle(np.array([[[0., 0., 1.]]]), idx * (360 / n_views))
normal_np = np.array(rgba_normal)[:, :, :3] / 255 # in [-1, 1]
alpha_np = np.array(rgba_normal)[:, :, 3] / 255 # in [0, 1]
normal_np = normal_np * 2 - 1
old_bkgd = normal_np[:1,:1]
normal_np[alpha_np > 0.05] = (normal_np[alpha_np > 0.05] - old_bkgd * (1 - alpha_np[alpha_np > 0.05][..., None])) / alpha_np[alpha_np > 0.05][..., None]
normal_np = normal_np * alpha_np[..., None] + target_bkgd * (1 - alpha_np[..., None])
normal_np = (normal_np + 1) / 2
rgba_normal_np = np.concatenate([normal_np * 255, alpha_np[..., None] * 255] , axis=-1)
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8)))
return ret
def fix_vert_color_glb(mesh_path):
from pygltflib import GLTF2, Material, PbrMetallicRoughness
obj1 = GLTF2().load(mesh_path)
obj1.meshes[0].primitives[0].material = 0
obj1.materials.append(Material(
pbrMetallicRoughness = PbrMetallicRoughness(
baseColorFactor = [1.0, 1.0, 1.0, 1.0],
metallicFactor = 0.,
roughnessFactor = 1.0,
),
emissiveFactor = [0.0, 0.0, 0.0],
doubleSided = True,
))
obj1.save(mesh_path)
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}"
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
def save_glb_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, dist=3.5, azim_offset=180, resolution=512, fov_in_degrees=1 / 1.15, cam_type="ortho", view_padding=60, export_video=True) -> Tuple[str, str]:
import time
if '.' in save_mesh_prefix:
save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1])
if with_timestamp:
save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}"
ret_mesh = save_mesh_prefix + ".glb"
# optimizied version
save_py3dmesh_with_trimesh_fast(meshes, ret_mesh)
return ret_mesh, None
def simple_clean_mesh(pyml_mesh: ml.Mesh, apply_smooth=True, stepsmoothnum=1, apply_sub_divide=False, sub_divide_threshold=0.25):
ms = ml.MeshSet()
ms.add_mesh(pyml_mesh, "cube_mesh")
if apply_smooth:
ms.apply_filter("apply_coord_laplacian_smoothing", stepsmoothnum=stepsmoothnum, cotangentweight=False)
if apply_sub_divide: # 5s, slow
ms.apply_filter("meshing_repair_non_manifold_vertices")
ms.apply_filter("meshing_repair_non_manifold_edges", method='Remove Faces')
ms.apply_filter("meshing_surface_subdivision_loop", iterations=2, threshold=PercentageValue(sub_divide_threshold))
return meshlab_mesh_to_py3dmesh(ms.current_mesh())
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"):
new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device)
imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255
img_nps = imgs[..., :3]
alpha_nps = imgs[..., 3]
ori_bkgds = img_nps[:, :1, :1]
alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1)
ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1)
ori_img_nps = torch.clamp(ori_img_nps, 0, 1)
img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd)
rgba_img_np = torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1)
return rgba_img_np
def rotation_matrix_axis_angle(axis, angle, device='cuda'):
"""
Return the rotation matrix associated with counterclockwise rotation about
the given axis by angle degrees, using PyTorch.
"""
if type(axis) != torch.tensor:
axis = torch.tensor(axis, device=device)
axis = axis.float().to(device)
if type(angle) != torch.tensor:
angle = torch.tensor(angle, device=device)
angle = angle.float().to(device)
theta = angle * torch.pi / 180.0
axis = torch.tensor(axis, dtype=torch.float32)
if torch.dot(axis, axis) > 0:
denom = torch.sqrt(torch.dot(axis, axis))
demon = torch.where(denom == 0, torch.tensor(EPSILON).to(denom.device), denom)
axis = axis / torch.sqrt(demon)
a = torch.cos(theta / 2.0)
b, c, d = -axis[0] * torch.sin(theta / 2.0), -axis[1] * torch.sin(theta / 2.0), -axis[2] * torch.sin(theta / 2.0)
aa, bb, cc, dd = a*a, b*b, c*c, d*d
bc, ad, ac, ab, bd, cd = b*c, a*d, a*c, a*b, b*d, c*d
return torch.stack([
torch.stack([aa+bb-cc-dd, 2*(bc+ad), 2*(bd-ac)]),
torch.stack([2*(bc-ad), aa+cc-bb-dd, 2*(cd+ab)]),
torch.stack([2*(bd+ac), 2*(cd-ab), aa+dd-bb-cc])
])
else:
return torch.eye(3)
def normal_rotation_img2img_angle_axis(image, angle, axis=None, device='cuda'):
"""
Rotate an image by a given angle around a given axis using PyTorch.
Args:
image: Input Image to rotate.
angle: Rotation angle in degrees.
axis: Rotation axis as a array of 3 floats.
Returns:
Image: Rotated Image.
"""
if axis is None:
axis = [0,1,0]
axis = torch.tensor(axis, device=device)
if type(image) == Image.Image:
image_array = torch.tensor(np.array(image, dtype='float32'))
else:
image_array = image
image_array = image_array.to(device)
if type(angle) != torch.Tensor:
angle = torch.tensor(angle)
angle = angle.to(device)
if image_array.shape[2] == 4:
rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3]
else:
rgb_array = image_array
alpha_array = None
rgb_array = rgb_array / 255.0 - 0.5
rgb_array = rgb_array.permute(2, 0, 1)
rotated_tensor = apply_rotation_angle_axis(rgb_array.unsqueeze(0), axis, torch.tensor([angle], device=rgb_array.device))
rotated_array = rotated_tensor.squeeze().permute(1, 2, 0)
rotated_array = (rotated_array/2 + 0.5) * 255
if alpha_array is not None:
rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2)
rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8')
rotated_normal = Image.fromarray(rotated_array_uint8)
return rotated_normal
def normal_rotation_img2img_c2w(image, c2w, device='cuda'):
if type(image) != torch.Tensor:
image_array = torch.tensor(np.array(image, dtype='float32'))
else:
image_array = image
image_array = image_array.to(device)
if image_array.shape[2] == 4:
rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3]
else:
rgb_array = image_array
alpha_array = None
rgb_array = rgb_array / 255.0 - 0.5
rotation_matrix = c2w
rotated_tensor = transform_normals_R(rgb_array, rotation_matrix)
rotated_array = rotated_tensor.squeeze().permute(1, 2, 0)
rotated_array = (rotated_array/2 + 0.5) * 255
if alpha_array is not None:
rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2)
rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8')
rotated_normal = Image.fromarray(rotated_array_uint8)
return rotated_normal
def normal_rotation_img2img_azi_ele(image, azi, ele, device='cuda'):
"""
Rotate an image by a given angle around a given axis using PyTorch.
Args:
image: Input Image to rotate.
Returns:
Image: Rotated Image.
"""
if type(image) == Image.Image:
image_array = torch.tensor(np.array(image, dtype='float32'))
else:
image_array = image
image_array = image_array.to(device)
if type(azi) != torch.Tensor:
azi = torch.tensor(azi)
azi = azi.to(device)
if type(ele) != torch.Tensor:
ele = torch.tensor(ele)
ele = ele.to(device)
if image_array.shape[2] == 4:
rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3]
else:
rgb_array = image_array
alpha_array = None
rgb_array = rgb_array / 255.0 - 0.5
rotation_matrix = get_rotation_matrix_azi_ele(azi, ele)
rotated_tensor = transform_normals_R(rgb_array, rotation_matrix)
rotated_array = rotated_tensor.squeeze().permute(1, 2, 0)
rotated_array = (rotated_array/2 + 0.5) * 255
if alpha_array is not None:
rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2)
rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8')
rotated_normal = Image.fromarray(rotated_array_uint8)
return rotated_normal
def rotate_normal_R(image, rotation_matrix, save_addr="", device="cuda"):
"""
Rotate a normal map by a given Rotation matrix using PyTorch.
Args:
image: Input Image to rotate.
Returns:
Image: Rotated Image.
"""
if type(image) != torch.tensor:
image_array = torch.tensor(np.array(image, dtype='float32'))
else:
image_array = image
image_array = image_array.to(device)
if image_array.shape[2] == 4:
rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3]
else:
rgb_array = image_array
alpha_array = None
rgb_array = rgb_array / 255.0 - 0.5
rotated_tensor = transform_normals_R(rgb_array, rotation_matrix.to(device))
rotated_array = rotated_tensor.squeeze().permute(1, 2, 0)
rotated_array = (rotated_array/2 + 0.5) * 255
if alpha_array is not None:
rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2)
rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8')
rotated_normal = Image.fromarray(rotated_array_uint8)
if save_addr:
rotated_normal.save(save_addr)
return rotated_normal
def transform_normals_R(local_normals, rotation_matrix):
assert local_normals.shape[2] ==3 ,f'local_normals.shape[2]: {local_normals.shape[2]}. only support rgb image'
h, w = local_normals.shape[:2]
local_normals_flat = local_normals.view(-1, 3).permute(1, 0)
images_flat = local_normals_flat.unsqueeze(0)
rotation_matrices = rotation_matrix.unsqueeze(0)
rotated_images_flat = torch.bmm(rotation_matrices, images_flat)
rotated_images = rotated_images_flat.view(1, 3, h, w)
norms = torch.norm(rotated_images, p=2, dim=1, keepdim=True)
norms = torch.where(norms == 0, torch.tensor(EPSILON).to(norms.device), norms)
normalized_images = rotated_images / norms
return normalized_images
def manage_elevation_azimuth(ele_list, azi_list):
"""deal with cases when elevation > 90"""
for i in range(len(ele_list)):
elevation = ele_list[i] % 360
azimuth = azi_list[i] % 360
if elevation > 90 and elevation<=270:
# when elevation is too big,camera gets to the other side
# print(f'!!! elevation({elevation}) > 90 and <=270, set to 180-elevation, and add 180 to azimuth')
elevation = 180 - elevation
azimuth = azimuth + 180
# print(f'new elevation: {elevation}, new azimuth: {azimuth}')
elif elevation>270:
# print(f'!!! elevation({elevation}) > 270, set to elevation-360, and use original azimuth')
elevation = elevation - 360
azimuth = azimuth
# print(f'new elevation: {elevation}, new azimuth: {azimuth}')
ele_list[i] = elevation
azi_list[i] = azimuth
return ele_list, azi_list
def get_rotation_matrix_azi_ele(azimuth, elevation):
ele = elevation/180 * torch.pi
azi = azimuth/180 * torch.pi
Rz = torch.tensor([
[torch.cos(azi), 0, -torch.sin(azi)],
[0, 1, 0],
[torch.sin(azi), 0, torch.cos(azi)],
]).to(azimuth.device)
Re = torch.tensor([
[1, 0, 0],
[0, torch.cos(ele), torch.sin(ele)],
[0, -torch.sin(ele), torch.cos(ele)],
]).to(elevation.device)
return torch.matmul(Rz,Re).to(azimuth.device)
def rotate_vector(vector, axis, angle, device='cuda'):
rot_matrix = rotation_matrix_axis_angle(axis, angle)
return torch.matmul(vector.to(device).float(), rot_matrix.to(device).float())
def apply_rotation_angle_axis(image, axis, angle, device='cuda'):
"""Apply rotation to a batch of images with shape [batch_size, 3(rgb), h, w] using PyTorch.
Args:
image (torch.Tensor): Input RGB image tensor of shape [batch_size, 3, h, w]. each pixel's rgb channels refer to direction of normal (can be negative)
axis (torch.Tensor): Rotation axis of shape [3].
angle (torch.Tensor): Rotation angles in degrees, of shape [batch_size].
Returns:
torch.Tensor: Rotated image tensor of shape [batch_size, 3, h, w]. values between [-1., 1.]
"""
if not isinstance(image, torch.Tensor):
image_tensor = torch.tensor(image).to(device)
else:
image_tensor = image.to(device)
if not isinstance(axis, torch.Tensor):
axis = torch.tensor(axis)
axis = axis.to(device)
if not isinstance(angle, torch.Tensor):
angle = torch.tensor(angle)
angle = angle.to(device)
batch_size, channels, h, w = image_tensor.shape
rot_matrix = rotation_matrix_axis_angle(axis, angle)
rotation_matrices = rot_matrix.permute(2, 0, 1)
batch_size, c, h, w = image_tensor.shape
images_flat = image_tensor.view(batch_size, c, h * w)
rotated_images_flat = torch.bmm(rotation_matrices, images_flat)
rotated_images = rotated_images_flat.view(batch_size, c, h, w)
norms = torch.norm(rotated_images, p=2, dim=1, keepdim=True)
norms = torch.where(norms == 0, torch.tensor(EPSILON).to(norms.device), norms)
normalized_images = rotated_images / norms
return normalized_images
|