Kiss3DGen / custom_diffusers /tests /models /autoencoders /test_models_autoencoder_tiny.py
JiantaoLin
new
10bcbc8
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderTiny
from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
floats_tensor,
load_hf_numpy,
slow,
torch_all_close,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class AutoencoderTinyTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = AutoencoderTiny
main_input_name = "sample"
base_precision = 1e-2
def get_autoencoder_tiny_config(self, block_out_channels=None):
block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32]
init_dict = {
"in_channels": 3,
"out_channels": 3,
"encoder_block_out_channels": block_out_channels,
"decoder_block_out_channels": block_out_channels,
"num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels],
"num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)],
}
return init_dict
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = self.get_autoencoder_tiny_config()
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skip("Model doesn't yet support smaller resolution.")
def test_enable_disable_tiling(self):
pass
def test_enable_disable_slicing(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
torch.manual_seed(0)
model = self.model_class(**init_dict).to(torch_device)
inputs_dict.update({"return_dict": False})
torch.manual_seed(0)
output_without_slicing = model(**inputs_dict)[0]
torch.manual_seed(0)
model.enable_slicing()
output_with_slicing = model(**inputs_dict)[0]
self.assertLess(
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(),
0.5,
"VAE slicing should not affect the inference results",
)
torch.manual_seed(0)
model.disable_slicing()
output_without_slicing_2 = model(**inputs_dict)[0]
self.assertEqual(
output_without_slicing.detach().cpu().numpy().all(),
output_without_slicing_2.detach().cpu().numpy().all(),
"Without slicing outputs should match with the outputs when slicing is manually disabled.",
)
@unittest.skip("Test not supported.")
def test_outputs_equivalence(self):
pass
@unittest.skip("Test not supported.")
def test_forward_with_norm_groups(self):
pass
def test_gradient_checkpointing_is_applied(self):
expected_set = {"DecoderTiny", "EncoderTiny"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
def test_effective_gradient_checkpointing(self):
if not self.model_class._supports_gradient_checkpointing:
return # Skip test if model does not support gradient checkpointing
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
inputs_dict_copy = copy.deepcopy(inputs_dict)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
assert not model.is_gradient_checkpointing and model.training
out = model(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
labels = torch.randn_like(out)
loss = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
torch.manual_seed(0)
model_2 = self.model_class(**init_dict)
# clone model
model_2.load_state_dict(model.state_dict())
model_2.to(torch_device)
model_2.enable_gradient_checkpointing()
assert model_2.is_gradient_checkpointing and model_2.training
out_2 = model_2(**inputs_dict_copy).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_2.zero_grad()
loss_2 = (out_2 - labels).mean()
loss_2.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_2).abs() < 1e-3)
named_params = dict(model.named_parameters())
named_params_2 = dict(model_2.named_parameters())
for name, param in named_params.items():
if "encoder.layers" in name:
continue
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=3e-2))
@slow
class AutoencoderTinyIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False):
torch_dtype = torch.float16 if fp16 else torch.float32
model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype)
model.to(torch_device).eval()
return model
@parameterized.expand(
[
[(1, 4, 73, 97), (1, 3, 584, 776)],
[(1, 4, 97, 73), (1, 3, 776, 584)],
[(1, 4, 49, 65), (1, 3, 392, 520)],
[(1, 4, 65, 49), (1, 3, 520, 392)],
[(1, 4, 49, 49), (1, 3, 392, 392)],
]
)
def test_tae_tiling(self, in_shape, out_shape):
model = self.get_sd_vae_model()
model.enable_tiling()
with torch.no_grad():
zeros = torch.zeros(in_shape).to(torch_device)
dec = model.decode(zeros).sample
assert dec.shape == out_shape
def test_stable_diffusion(self):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed=33)
with torch.no_grad():
sample = model(image).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382])
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
@parameterized.expand([(True,), (False,)])
def test_tae_roundtrip(self, enable_tiling):
# load the autoencoder
model = self.get_sd_vae_model()
if enable_tiling:
model.enable_tiling()
# make a black image with a white square in the middle,
# which is large enough to split across multiple tiles
image = -torch.ones(1, 3, 1024, 1024, device=torch_device)
image[..., 256:768, 256:768] = 1.0
# round-trip the image through the autoencoder
with torch.no_grad():
sample = model(image).sample
# the autoencoder reconstruction should match original image, sorta
def downscale(x):
return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor)
assert torch_all_close(downscale(sample), downscale(image), atol=0.125)