|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import gc |
|
import unittest |
|
|
|
import torch |
|
from parameterized import parameterized |
|
|
|
from diffusers import AutoencoderTiny |
|
from diffusers.utils.testing_utils import ( |
|
backend_empty_cache, |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_hf_numpy, |
|
slow, |
|
torch_all_close, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class AutoencoderTinyTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = AutoencoderTiny |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
|
|
def get_autoencoder_tiny_config(self, block_out_channels=None): |
|
block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32] |
|
init_dict = { |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"encoder_block_out_channels": block_out_channels, |
|
"decoder_block_out_channels": block_out_channels, |
|
"num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels], |
|
"num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)], |
|
} |
|
return init_dict |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
|
|
return {"sample": image} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = self.get_autoencoder_tiny_config() |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
@unittest.skip("Model doesn't yet support smaller resolution.") |
|
def test_enable_disable_tiling(self): |
|
pass |
|
|
|
def test_enable_disable_slicing(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict).to(torch_device) |
|
|
|
inputs_dict.update({"return_dict": False}) |
|
|
|
torch.manual_seed(0) |
|
output_without_slicing = model(**inputs_dict)[0] |
|
|
|
torch.manual_seed(0) |
|
model.enable_slicing() |
|
output_with_slicing = model(**inputs_dict)[0] |
|
|
|
self.assertLess( |
|
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), |
|
0.5, |
|
"VAE slicing should not affect the inference results", |
|
) |
|
|
|
torch.manual_seed(0) |
|
model.disable_slicing() |
|
output_without_slicing_2 = model(**inputs_dict)[0] |
|
|
|
self.assertEqual( |
|
output_without_slicing.detach().cpu().numpy().all(), |
|
output_without_slicing_2.detach().cpu().numpy().all(), |
|
"Without slicing outputs should match with the outputs when slicing is manually disabled.", |
|
) |
|
|
|
@unittest.skip("Test not supported.") |
|
def test_outputs_equivalence(self): |
|
pass |
|
|
|
@unittest.skip("Test not supported.") |
|
def test_forward_with_norm_groups(self): |
|
pass |
|
|
|
def test_gradient_checkpointing_is_applied(self): |
|
expected_set = {"DecoderTiny", "EncoderTiny"} |
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set) |
|
|
|
def test_effective_gradient_checkpointing(self): |
|
if not self.model_class._supports_gradient_checkpointing: |
|
return |
|
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
inputs_dict_copy = copy.deepcopy(inputs_dict) |
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
assert not model.is_gradient_checkpointing and model.training |
|
|
|
out = model(**inputs_dict).sample |
|
|
|
|
|
model.zero_grad() |
|
|
|
labels = torch.randn_like(out) |
|
loss = (out - labels).mean() |
|
loss.backward() |
|
|
|
|
|
torch.manual_seed(0) |
|
model_2 = self.model_class(**init_dict) |
|
|
|
model_2.load_state_dict(model.state_dict()) |
|
model_2.to(torch_device) |
|
model_2.enable_gradient_checkpointing() |
|
|
|
assert model_2.is_gradient_checkpointing and model_2.training |
|
|
|
out_2 = model_2(**inputs_dict_copy).sample |
|
|
|
|
|
model_2.zero_grad() |
|
loss_2 = (out_2 - labels).mean() |
|
loss_2.backward() |
|
|
|
|
|
self.assertTrue((loss - loss_2).abs() < 1e-3) |
|
named_params = dict(model.named_parameters()) |
|
named_params_2 = dict(model_2.named_parameters()) |
|
|
|
for name, param in named_params.items(): |
|
if "encoder.layers" in name: |
|
continue |
|
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=3e-2)) |
|
|
|
|
|
@slow |
|
class AutoencoderTinyIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
backend_empty_cache(torch_device) |
|
|
|
def get_file_format(self, seed, shape): |
|
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" |
|
|
|
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
|
return image |
|
|
|
def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False): |
|
torch_dtype = torch.float16 if fp16 else torch.float32 |
|
|
|
model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype) |
|
model.to(torch_device).eval() |
|
return model |
|
|
|
@parameterized.expand( |
|
[ |
|
[(1, 4, 73, 97), (1, 3, 584, 776)], |
|
[(1, 4, 97, 73), (1, 3, 776, 584)], |
|
[(1, 4, 49, 65), (1, 3, 392, 520)], |
|
[(1, 4, 65, 49), (1, 3, 520, 392)], |
|
[(1, 4, 49, 49), (1, 3, 392, 392)], |
|
] |
|
) |
|
def test_tae_tiling(self, in_shape, out_shape): |
|
model = self.get_sd_vae_model() |
|
model.enable_tiling() |
|
with torch.no_grad(): |
|
zeros = torch.zeros(in_shape).to(torch_device) |
|
dec = model.decode(zeros).sample |
|
assert dec.shape == out_shape |
|
|
|
def test_stable_diffusion(self): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed=33) |
|
|
|
with torch.no_grad(): |
|
sample = model(image).sample |
|
|
|
assert sample.shape == image.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382]) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) |
|
|
|
@parameterized.expand([(True,), (False,)]) |
|
def test_tae_roundtrip(self, enable_tiling): |
|
|
|
model = self.get_sd_vae_model() |
|
if enable_tiling: |
|
model.enable_tiling() |
|
|
|
|
|
|
|
image = -torch.ones(1, 3, 1024, 1024, device=torch_device) |
|
image[..., 256:768, 256:768] = 1.0 |
|
|
|
|
|
with torch.no_grad(): |
|
sample = model(image).sample |
|
|
|
|
|
def downscale(x): |
|
return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor) |
|
|
|
assert torch_all_close(downscale(sample), downscale(image), atol=0.125) |
|
|