# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderTiny from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, floats_tensor, load_hf_numpy, slow, torch_all_close, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class AutoencoderTinyTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderTiny main_input_name = "sample" base_precision = 1e-2 def get_autoencoder_tiny_config(self, block_out_channels=None): block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32] init_dict = { "in_channels": 3, "out_channels": 3, "encoder_block_out_channels": block_out_channels, "decoder_block_out_channels": block_out_channels, "num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels], "num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)], } return init_dict @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = self.get_autoencoder_tiny_config() inputs_dict = self.dummy_input return init_dict, inputs_dict @unittest.skip("Model doesn't yet support smaller resolution.") def test_enable_disable_tiling(self): pass def test_enable_disable_slicing(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() torch.manual_seed(0) model = self.model_class(**init_dict).to(torch_device) inputs_dict.update({"return_dict": False}) torch.manual_seed(0) output_without_slicing = model(**inputs_dict)[0] torch.manual_seed(0) model.enable_slicing() output_with_slicing = model(**inputs_dict)[0] self.assertLess( (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), 0.5, "VAE slicing should not affect the inference results", ) torch.manual_seed(0) model.disable_slicing() output_without_slicing_2 = model(**inputs_dict)[0] self.assertEqual( output_without_slicing.detach().cpu().numpy().all(), output_without_slicing_2.detach().cpu().numpy().all(), "Without slicing outputs should match with the outputs when slicing is manually disabled.", ) @unittest.skip("Test not supported.") def test_outputs_equivalence(self): pass @unittest.skip("Test not supported.") def test_forward_with_norm_groups(self): pass def test_gradient_checkpointing_is_applied(self): expected_set = {"DecoderTiny", "EncoderTiny"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) def test_effective_gradient_checkpointing(self): if not self.model_class._supports_gradient_checkpointing: return # Skip test if model does not support gradient checkpointing # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() inputs_dict_copy = copy.deepcopy(inputs_dict) torch.manual_seed(0) model = self.model_class(**init_dict) model.to(torch_device) assert not model.is_gradient_checkpointing and model.training out = model(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() labels = torch.randn_like(out) loss = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing torch.manual_seed(0) model_2 = self.model_class(**init_dict) # clone model model_2.load_state_dict(model.state_dict()) model_2.to(torch_device) model_2.enable_gradient_checkpointing() assert model_2.is_gradient_checkpointing and model_2.training out_2 = model_2(**inputs_dict_copy).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_2.zero_grad() loss_2 = (out_2 - labels).mean() loss_2.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_2).abs() < 1e-3) named_params = dict(model.named_parameters()) named_params_2 = dict(model_2.named_parameters()) for name, param in named_params.items(): if "encoder.layers" in name: continue self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=3e-2)) @slow class AutoencoderTinyIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False): torch_dtype = torch.float16 if fp16 else torch.float32 model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype) model.to(torch_device).eval() return model @parameterized.expand( [ [(1, 4, 73, 97), (1, 3, 584, 776)], [(1, 4, 97, 73), (1, 3, 776, 584)], [(1, 4, 49, 65), (1, 3, 392, 520)], [(1, 4, 65, 49), (1, 3, 520, 392)], [(1, 4, 49, 49), (1, 3, 392, 392)], ] ) def test_tae_tiling(self, in_shape, out_shape): model = self.get_sd_vae_model() model.enable_tiling() with torch.no_grad(): zeros = torch.zeros(in_shape).to(torch_device) dec = model.decode(zeros).sample assert dec.shape == out_shape def test_stable_diffusion(self): model = self.get_sd_vae_model() image = self.get_sd_image(seed=33) with torch.no_grad(): sample = model(image).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382]) assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) @parameterized.expand([(True,), (False,)]) def test_tae_roundtrip(self, enable_tiling): # load the autoencoder model = self.get_sd_vae_model() if enable_tiling: model.enable_tiling() # make a black image with a white square in the middle, # which is large enough to split across multiple tiles image = -torch.ones(1, 3, 1024, 1024, device=torch_device) image[..., 256:768, 256:768] = 1.0 # round-trip the image through the autoencoder with torch.no_grad(): sample = model(image).sample # the autoencoder reconstruction should match original image, sorta def downscale(x): return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor) assert torch_all_close(downscale(sample), downscale(image), atol=0.125)