|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import torch |
|
from datasets import load_dataset |
|
from parameterized import parameterized |
|
|
|
from diffusers import AutoencoderOobleck |
|
from diffusers.utils.testing_utils import ( |
|
backend_empty_cache, |
|
enable_full_determinism, |
|
floats_tensor, |
|
slow, |
|
torch_all_close, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class AutoencoderOobleckTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = AutoencoderOobleck |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
|
|
def get_autoencoder_oobleck_config(self, block_out_channels=None): |
|
init_dict = { |
|
"encoder_hidden_size": 12, |
|
"decoder_channels": 12, |
|
"decoder_input_channels": 6, |
|
"audio_channels": 2, |
|
"downsampling_ratios": [2, 4], |
|
"channel_multiples": [1, 2], |
|
} |
|
return init_dict |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 2 |
|
seq_len = 24 |
|
|
|
waveform = floats_tensor((batch_size, num_channels, seq_len)).to(torch_device) |
|
|
|
return {"sample": waveform, "sample_posterior": False} |
|
|
|
@property |
|
def input_shape(self): |
|
return (2, 24) |
|
|
|
@property |
|
def output_shape(self): |
|
return (2, 24) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = self.get_autoencoder_oobleck_config() |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_enable_disable_slicing(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict).to(torch_device) |
|
|
|
inputs_dict.update({"return_dict": False}) |
|
|
|
torch.manual_seed(0) |
|
output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
torch.manual_seed(0) |
|
model.enable_slicing() |
|
output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
self.assertLess( |
|
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), |
|
0.5, |
|
"VAE slicing should not affect the inference results", |
|
) |
|
|
|
torch.manual_seed(0) |
|
model.disable_slicing() |
|
output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
self.assertEqual( |
|
output_without_slicing.detach().cpu().numpy().all(), |
|
output_without_slicing_2.detach().cpu().numpy().all(), |
|
"Without slicing outputs should match with the outputs when slicing is manually disabled.", |
|
) |
|
|
|
@unittest.skip("Test unsupported.") |
|
def test_forward_with_norm_groups(self): |
|
pass |
|
|
|
@unittest.skip("No attention module used in this model") |
|
def test_set_attn_processor_for_determinism(self): |
|
return |
|
|
|
|
|
@slow |
|
class AutoencoderOobleckIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
backend_empty_cache(torch_device) |
|
|
|
def _load_datasamples(self, num_samples): |
|
ds = load_dataset( |
|
"hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True |
|
) |
|
|
|
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] |
|
|
|
return torch.nn.utils.rnn.pad_sequence( |
|
[torch.from_numpy(x["array"]) for x in speech_samples], batch_first=True |
|
) |
|
|
|
def get_audio(self, audio_sample_size=2097152, fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
audio = self._load_datasamples(2).to(torch_device).to(dtype) |
|
|
|
|
|
audio = torch.nn.functional.pad(audio[:, :audio_sample_size], pad=(0, audio_sample_size - audio.shape[-1])) |
|
|
|
|
|
audio = audio.unsqueeze(1).repeat(1, 2, 1).to(torch_device) |
|
|
|
return audio |
|
|
|
def get_oobleck_vae_model(self, model_id="stabilityai/stable-audio-open-1.0", fp16=False): |
|
torch_dtype = torch.float16 if fp16 else torch.float32 |
|
|
|
model = AutoencoderOobleck.from_pretrained( |
|
model_id, |
|
subfolder="vae", |
|
torch_dtype=torch_dtype, |
|
) |
|
model.to(torch_device) |
|
|
|
return model |
|
|
|
def get_generator(self, seed=0): |
|
generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" |
|
if torch_device != "mps": |
|
return torch.Generator(device=generator_device).manual_seed(seed) |
|
return torch.manual_seed(seed) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, [1.193e-4, 6.56e-05, 1.314e-4, 3.80e-05, -4.01e-06], 0.001192], |
|
[44, [2.77e-05, -2.65e-05, 1.18e-05, -6.94e-05, -9.57e-05], 0.001196], |
|
|
|
] |
|
) |
|
def test_stable_diffusion(self, seed, expected_slice, expected_mean_absolute_diff): |
|
model = self.get_oobleck_vae_model() |
|
audio = self.get_audio() |
|
generator = self.get_generator(seed) |
|
|
|
with torch.no_grad(): |
|
sample = model(audio, generator=generator, sample_posterior=True).sample |
|
|
|
assert sample.shape == audio.shape |
|
assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6 |
|
|
|
output_slice = sample[-1, 1, 5:10].cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-5) |
|
|
|
def test_stable_diffusion_mode(self): |
|
model = self.get_oobleck_vae_model() |
|
audio = self.get_audio() |
|
|
|
with torch.no_grad(): |
|
sample = model(audio, sample_posterior=False).sample |
|
|
|
assert sample.shape == audio.shape |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, [1.193e-4, 6.56e-05, 1.314e-4, 3.80e-05, -4.01e-06], 0.001192], |
|
[44, [2.77e-05, -2.65e-05, 1.18e-05, -6.94e-05, -9.57e-05], 0.001196], |
|
|
|
] |
|
) |
|
def test_stable_diffusion_encode_decode(self, seed, expected_slice, expected_mean_absolute_diff): |
|
model = self.get_oobleck_vae_model() |
|
audio = self.get_audio() |
|
generator = self.get_generator(seed) |
|
|
|
with torch.no_grad(): |
|
x = audio |
|
posterior = model.encode(x).latent_dist |
|
z = posterior.sample(generator=generator) |
|
sample = model.decode(z).sample |
|
|
|
|
|
assert posterior.mean.shape == (audio.shape[0], model.config.decoder_input_channels, 1024) |
|
|
|
assert sample.shape == audio.shape |
|
assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6 |
|
|
|
output_slice = sample[-1, 1, 5:10].cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-5) |
|
|