File size: 7,715 Bytes
df4a4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import torch
from datasets import load_dataset
from parameterized import parameterized

from diffusers import AutoencoderOobleck
from diffusers.utils.testing_utils import (
    backend_empty_cache,
    enable_full_determinism,
    floats_tensor,
    slow,
    torch_all_close,
    torch_device,
)

from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin


enable_full_determinism()


class AutoencoderOobleckTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AutoencoderOobleck
    main_input_name = "sample"
    base_precision = 1e-2

    def get_autoencoder_oobleck_config(self, block_out_channels=None):
        init_dict = {
            "encoder_hidden_size": 12,
            "decoder_channels": 12,
            "decoder_input_channels": 6,
            "audio_channels": 2,
            "downsampling_ratios": [2, 4],
            "channel_multiples": [1, 2],
        }
        return init_dict

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 2
        seq_len = 24

        waveform = floats_tensor((batch_size, num_channels, seq_len)).to(torch_device)

        return {"sample": waveform, "sample_posterior": False}

    @property
    def input_shape(self):
        return (2, 24)

    @property
    def output_shape(self):
        return (2, 24)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = self.get_autoencoder_oobleck_config()
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_enable_disable_slicing(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        torch.manual_seed(0)
        model = self.model_class(**init_dict).to(torch_device)

        inputs_dict.update({"return_dict": False})

        torch.manual_seed(0)
        output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        torch.manual_seed(0)
        model.enable_slicing()
        output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        self.assertLess(
            (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(),
            0.5,
            "VAE slicing should not affect the inference results",
        )

        torch.manual_seed(0)
        model.disable_slicing()
        output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        self.assertEqual(
            output_without_slicing.detach().cpu().numpy().all(),
            output_without_slicing_2.detach().cpu().numpy().all(),
            "Without slicing outputs should match with the outputs when slicing is manually disabled.",
        )

    @unittest.skip("Test unsupported.")
    def test_forward_with_norm_groups(self):
        pass

    @unittest.skip("No attention module used in this model")
    def test_set_attn_processor_for_determinism(self):
        return


@slow
class AutoencoderOobleckIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        backend_empty_cache(torch_device)

    def _load_datasamples(self, num_samples):
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        )
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

        return torch.nn.utils.rnn.pad_sequence(
            [torch.from_numpy(x["array"]) for x in speech_samples], batch_first=True
        )

    def get_audio(self, audio_sample_size=2097152, fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        audio = self._load_datasamples(2).to(torch_device).to(dtype)

        # pad / crop to audio_sample_size
        audio = torch.nn.functional.pad(audio[:, :audio_sample_size], pad=(0, audio_sample_size - audio.shape[-1]))

        # todo channel
        audio = audio.unsqueeze(1).repeat(1, 2, 1).to(torch_device)

        return audio

    def get_oobleck_vae_model(self, model_id="stabilityai/stable-audio-open-1.0", fp16=False):
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderOobleck.from_pretrained(
            model_id,
            subfolder="vae",
            torch_dtype=torch_dtype,
        )
        model.to(torch_device)

        return model

    def get_generator(self, seed=0):
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)

    @parameterized.expand(
        [
            # fmt: off
            [33, [1.193e-4, 6.56e-05, 1.314e-4, 3.80e-05, -4.01e-06], 0.001192],
            [44, [2.77e-05, -2.65e-05, 1.18e-05, -6.94e-05, -9.57e-05], 0.001196],
            # fmt: on
        ]
    )
    def test_stable_diffusion(self, seed, expected_slice, expected_mean_absolute_diff):
        model = self.get_oobleck_vae_model()
        audio = self.get_audio()
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(audio, generator=generator, sample_posterior=True).sample

        assert sample.shape == audio.shape
        assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6

        output_slice = sample[-1, 1, 5:10].cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-5)

    def test_stable_diffusion_mode(self):
        model = self.get_oobleck_vae_model()
        audio = self.get_audio()

        with torch.no_grad():
            sample = model(audio, sample_posterior=False).sample

        assert sample.shape == audio.shape

    @parameterized.expand(
        [
            # fmt: off
            [33, [1.193e-4, 6.56e-05, 1.314e-4, 3.80e-05, -4.01e-06], 0.001192],
            [44, [2.77e-05, -2.65e-05, 1.18e-05, -6.94e-05, -9.57e-05], 0.001196],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_decode(self, seed, expected_slice, expected_mean_absolute_diff):
        model = self.get_oobleck_vae_model()
        audio = self.get_audio()
        generator = self.get_generator(seed)

        with torch.no_grad():
            x = audio
            posterior = model.encode(x).latent_dist
            z = posterior.sample(generator=generator)
            sample = model.decode(z).sample

        # (batch_size, latent_dim, sequence_length)
        assert posterior.mean.shape == (audio.shape[0], model.config.decoder_input_channels, 1024)

        assert sample.shape == audio.shape
        assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6

        output_slice = sample[-1, 1, 5:10].cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-5)