File size: 14,879 Bytes
98bebfc bfcd6c7 3544dc1 8e2925c a00a59a ee385a6 98bebfc 4531ef8 98bebfc 3a8b023 0ab94ef ca3ac96 3544dc1 98bebfc 155ad21 98bebfc 775d9d5 c1bb489 98bebfc 3b39c63 98bebfc 3b39c63 98bebfc cf3bd8a 869a928 cf3bd8a b78fa8b 98bebfc 8e9a1c4 98bebfc 3b39c63 98bebfc 700d917 98bebfc ac13f0b dfc2f3d 6f2632d 3af2619 98bebfc cf3bd8a 25bb393 cf3bd8a 0f12cd3 cf3bd8a 155ad21 cf3bd8a dbda984 c4a1807 98bebfc 04911bb 98bebfc 3b39c63 98bebfc 3b39c63 98bebfc 621b8ec 98bebfc 775d9d5 0e47503 98bebfc 775d9d5 98bebfc fce0236 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import gradio as gr
import os
import subprocess
import shlex
import spaces
import torch
access_token = os.getenv("HUGGINGFACE_TOKEN")
subprocess.run(
shlex.split(
"pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt210/download.html"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/nvdiffrast-0.3.1+torch-py3-none-any.whl --force-reinstall --no-deps"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/renderutils_plugin-1.0-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
)
)
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
print("==> finfish install")
install_cuda_toolkit()
@spaces.GPU
def check_gpu():
os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1'
os.environ['PATH'] += ':/usr/local/cuda-12.1/bin'
# os.environ['LD_LIBRARY_PATH'] += ':/usr/local/cuda-12.1/lib64'
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
subprocess.run(['nvidia-smi']) # 测试 CUDA 是否可用
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
check_gpu()
from PIL import Image
from einops import rearrange
from diffusers import FluxPipeline
from models.lrm.utils.camera_util import get_flux_input_cameras
from models.lrm.utils.infer_util import save_video
from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
from models.lrm.utils.render_utils import rotate_x, rotate_y
from models.lrm.utils.train_util import instantiate_from_config
from models.ISOMER.reconstruction_func import reconstruction
from models.ISOMER.projection_func import projection
import os
from einops import rearrange
from omegaconf import OmegaConf
import torch
import numpy as np
import trimesh
import torchvision
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from torchvision.transforms import v2
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers import FluxPipeline
from pytorch_lightning import seed_everything
import os
from huggingface_hub import hf_hub_download
from utils.tool import NormalTransfer, get_background, get_render_cameras_video, load_mipmap, render_frames
device_0 = "cuda"
device_1 = "cuda"
resolution = 512
save_dir = "./outputs"
normal_transfer = NormalTransfer()
isomer_azimuths = torch.from_numpy(np.array([0, 90, 180, 270])).float().to(device_1)
isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).float().to(device_1)
isomer_radius = 4.5
isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device_1)
isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device_1)
# model initialization and loading
# flux
# taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device_0)
# good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=access_token).to(device_0)
flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=access_token).to(device=device_0, dtype=torch.bfloat16)
# flux_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, vae=taef1, token=access_token).to(device_0)
flux_lora_ckpt_path = hf_hub_download(repo_id="LTT/xxx-ckpt", filename="rgb_normal_large.safetensors", repo_type="model", token=access_token)
flux_pipe.load_lora_weights(flux_lora_ckpt_path)
flux_pipe.to(device=device_0, dtype=torch.bfloat16)
torch.cuda.empty_cache()
# flux_pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(flux_pipe)
# lrm
# config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
# model_config = config.model_config
# infer_config = config.infer_config
# model = instantiate_from_config(model_config)
# model_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="final_ckpt.ckpt", repo_type="model")
# state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
# state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
# model.load_state_dict(state_dict, strict=True)
# model = model.to(device_1)
# torch.cuda.empty_cache()
@spaces.GPU
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False):
images = image.unsqueeze(0).to(device_1)
images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
# breakpoint()
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras)
mesh_path_idx = os.path.join(save_path, f'{name}.obj')
mesh_out = model.extract_mesh(
planes,
use_texture_map=export_texmap,
**infer_config,
)
if export_texmap:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map.permute(1, 2, 0).data.cpu().numpy(),
mesh_path_idx,
)
else:
vertices, faces, vertex_colors = mesh_out
save_obj(vertices, faces, vertex_colors, mesh_path_idx)
print(f"Mesh saved to {mesh_path_idx}")
render_size = 512
if if_save_video:
video_path_idx = os.path.join(save_path, f'{name}.mp4')
render_size = infer_config.render_resolution
ENV = load_mipmap("models/lrm/env_mipmap/6")
materials = (0.0,0.9)
all_mv, all_mvp, all_campos = get_render_cameras_video(
batch_size=1,
M=240,
radius=4.5,
elevation=(90, 60.0),
is_flexicubes=True,
fov=30
)
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
model,
planes,
render_cameras=all_mvp,
camera_pos=all_campos,
env=ENV,
materials=materials,
render_size=render_size,
chunk_size=20,
is_flexicubes=True,
)
normals = (torch.nn.functional.normalize(normals) + 1) / 2
normals = normals * alphas + (1-alphas)
all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
save_video(
all_frames,
video_path_idx,
fps=30,
)
print(f"Video saved to {video_path_idx}")
return vertices, faces
def local_normal_global_transform(local_normal_images, azimuths_deg, elevations_deg):
if local_normal_images.min() >= 0:
local_normal = local_normal_images.float() * 2 - 1
else:
local_normal = local_normal_images.float()
global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
global_normal[...,0] *= -1
global_normal = (global_normal + 1) / 2
global_normal = global_normal.permute(0, 3, 1, 2)
return global_normal
# 生成多视图图像
@spaces.GPU(duration=120)
def generate_multi_view_images(prompt, seed):
# torch.cuda.empty_cache()
# generator = torch.manual_seed(seed)
generator = torch.Generator().manual_seed(seed)
with torch.no_grad():
img = flux_pipe(
prompt=prompt,
num_inference_steps=5,
guidance_scale=3.5,
num_images_per_prompt=1,
width=resolution * 2,
height=resolution * 1,
output_type='np',
generator=generator,
).images
# for img in flux_pipe.flux_pipe_call_that_returns_an_iterable_of_images(
# prompt=prompt,
# guidance_scale=3.5,
# num_inference_steps=4,
# width=resolution * 4,
# height=resolution * 2,
# generator=generator,
# output_type="np",
# good_vae=good_vae,
# ):
# pass
# 返回最终的图像和种子(通过外部调用处理)
return img
# 重建 3D 模型
@spaces.GPU
def reconstruct_3d_model(images, prompt):
global model
model.init_flexicubes_geometry(device_1, fovy=50.0)
model = model.eval()
rgb_normal_grid = images
save_dir_path = os.path.join(save_dir, prompt.replace(" ", "_"))
os.makedirs(save_dir_path, exist_ok=True)
images = torch.from_numpy(rgb_normal_grid).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=2, m=4) # (8, 3, 512, 512)
rgb_multi_view = images[:4, :3, :, :]
normal_multi_view = images[4:, :3, :, :]
multi_view_mask = get_background(normal_multi_view)
rgb_multi_view = rgb_multi_view * rgb_multi_view + (1-multi_view_mask)
input_cameras = get_flux_input_cameras(batch_size=1, radius=4.2, fov=30).to(device_1)
vertices, faces = lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm', export_texmap=False, if_save_video=False)
# local normal to global normal
global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1), isomer_azimuths, isomer_elevations)
global_normal = global_normal * multi_view_mask + (1-multi_view_mask)
global_normal = global_normal.permute(0,2,3,1)
rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
multi_view_mask = multi_view_mask.permute(0,2,3,1).squeeze(-1)
vertices = torch.from_numpy(vertices).to(device_1)
faces = torch.from_numpy(faces).to(device_1)
vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3]
vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3]
# global_normal: B,H,W,3
# multi_view_mask: B,H,W
# rgb_multi_view: B,H,W,3
meshes = reconstruction(
normal_pils=global_normal,
masks=multi_view_mask,
weights=isomer_geo_weights,
fov=30,
radius=isomer_radius,
camera_angles_azi=isomer_azimuths,
camera_angles_ele=isomer_elevations,
expansion_weight_stage1=0.1,
init_type="file",
init_verts=vertices,
init_faces=faces,
stage1_steps=0,
stage2_steps=50,
start_edge_len_stage1=0.1,
end_edge_len_stage1=0.02,
start_edge_len_stage2=0.02,
end_edge_len_stage2=0.005,
)
save_glb_addr = projection(
meshes,
masks=multi_view_mask,
images=rgb_multi_view,
azimuths=isomer_azimuths,
elevations=isomer_elevations,
weights=isomer_color_weights,
fov=30,
radius=isomer_radius,
save_dir=f"{save_dir_path}/ISOMER/",
)
return save_glb_addr
# Gradio 接口函数
@spaces.GPU
def gradio_pipeline(prompt, seed):
# 生成多视图图像
rgb_normal_grid = generate_multi_view_images(prompt, seed)
# rgb_normal_grid = np.load("rgb_normal_grid.npy")
image_preview = Image.fromarray((rgb_normal_grid[0] * 255).astype(np.uint8))
# 3d reconstruction
# 重建 3D 模型并返回 glb 路径
# save_glb_addr = reconstruct_3d_model(rgb_normal_grid, prompt)
save_glb_addr = None
return image_preview, save_glb_addr
# Gradio Blocks 应用
with gr.Blocks() as demo:
with gr.Row(variant="panel"):
# 左侧输入区域
with gr.Column():
with gr.Row():
prompt_input = gr.Textbox(
label="Enter Prompt",
placeholder="Describe your 3D model...",
lines=2,
elem_id="prompt_input"
)
with gr.Row():
sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
gr.Markdown("Examples:")
gr.Examples(
examples=[
["a castle on a hill"],
["an owl wearing a hat"],
["a futuristic car"]
],
inputs=[prompt_input],
label="Prompt Examples"
)
# 右侧输出区域
with gr.Column():
with gr.Row():
rgb_normal_grid_image = gr.Image(
label="RGB Normal Grid",
type="pil",
interactive=False
)
with gr.Row():
with gr.Tab("GLB"):
output_glb_model = gr.Model3D(
label="Generated 3D Model (GLB Format)",
interactive=False
)
gr.Markdown("Download the model for proper visualization.")
# 处理逻辑
submit.click(
fn=gradio_pipeline, inputs=[prompt_input, sample_seed],
outputs=[rgb_normal_grid_image, output_glb_model]
)
# 启动应用
# demo.queue(max_size=10)
demo.launch()
|