Update app.py
Browse files
app.py
CHANGED
@@ -94,12 +94,11 @@ isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(d
|
|
94 |
|
95 |
# model initialization and loading
|
96 |
# flux
|
97 |
-
flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=access_token).to(
|
98 |
flux_lora_ckpt_path = hf_hub_download(repo_id="LTT/xxx-ckpt", filename="rgb_normal_large.safetensors", repo_type="model")
|
99 |
flux_pipe.load_lora_weights(flux_lora_ckpt_path)
|
100 |
|
101 |
-
|
102 |
-
generator = torch.Generator(device=device).manual_seed(10)
|
103 |
|
104 |
# lrm
|
105 |
config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
|
@@ -111,9 +110,6 @@ state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
|
111 |
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
|
112 |
model.load_state_dict(state_dict, strict=True)
|
113 |
|
114 |
-
model = model.to(device)
|
115 |
-
model.init_flexicubes_geometry(device, fovy=50.0)
|
116 |
-
model = model.eval()
|
117 |
|
118 |
@spaces.GPU
|
119 |
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False):
|
@@ -284,6 +280,10 @@ def reconstruct_3d_model(images, prompt):
|
|
284 |
|
285 |
# Gradio 接口函数
|
286 |
def gradio_pipeline(prompt, seed):
|
|
|
|
|
|
|
|
|
287 |
# 生成多视图图像
|
288 |
rgb_normal_grid = generate_multi_view_images(prompt, seed)
|
289 |
image_preview = Image.fromarray((rgb_normal_grid * 255).astype(np.uint8))
|
|
|
94 |
|
95 |
# model initialization and loading
|
96 |
# flux
|
97 |
+
flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=access_token).to(dtype=torch.bfloat16)
|
98 |
flux_lora_ckpt_path = hf_hub_download(repo_id="LTT/xxx-ckpt", filename="rgb_normal_large.safetensors", repo_type="model")
|
99 |
flux_pipe.load_lora_weights(flux_lora_ckpt_path)
|
100 |
|
101 |
+
|
|
|
102 |
|
103 |
# lrm
|
104 |
config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
|
|
|
110 |
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
|
111 |
model.load_state_dict(state_dict, strict=True)
|
112 |
|
|
|
|
|
|
|
113 |
|
114 |
@spaces.GPU
|
115 |
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False):
|
|
|
280 |
|
281 |
# Gradio 接口函数
|
282 |
def gradio_pipeline(prompt, seed):
|
283 |
+
flux_pipe.to(device=device, dtype=torch.bfloat16)
|
284 |
+
model = model.to(device)
|
285 |
+
model.init_flexicubes_geometry(device, fovy=50.0)
|
286 |
+
model = model.eval()
|
287 |
# 生成多视图图像
|
288 |
rgb_normal_grid = generate_multi_view_images(prompt, seed)
|
289 |
image_preview = Image.fromarray((rgb_normal_grid * 255).astype(np.uint8))
|