|
import torchvision.transforms as transforms |
|
from torchvision import datasets |
|
from torch.utils.data import DataLoader |
|
from torchvision.datasets import ImageFolder |
|
|
|
|
|
def MNISTDataLoader(data_dir, batch_size, img_size=32): |
|
train_transform = transforms.Compose([ |
|
transforms.Resize(img_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.1307,), (0.3081,)) |
|
]) |
|
train_dataset = datasets.MNIST(root=data_dir, train=True, |
|
download=True, transform=train_transform) |
|
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) |
|
|
|
test_transform = transforms.Compose([ |
|
transforms.Resize(img_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.1307,), (0.3081,)) |
|
]) |
|
test_dataset = datasets.MNIST(root=data_dir, train=False, |
|
transform=test_transform) |
|
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) |
|
|
|
return train_loader, test_loader |
|
|
|
|
|
def CIFAR10DataLoader(data_dir, batch_size, img_size=32): |
|
train_transform = transforms.Compose([ |
|
transforms.Resize(img_size), |
|
transforms.RandomCrop(32, padding=4), |
|
transforms.RandomHorizontalFlip(), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
|
]) |
|
train_dataset = datasets.CIFAR10(root=data_dir, train=True, |
|
download=True, transform=train_transform) |
|
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) |
|
|
|
test_transform = transforms.Compose([ |
|
transforms.Resize(img_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
|
]) |
|
test_dataset = datasets.CIFAR10(root=data_dir, train=False, |
|
download=True, transform=test_transform) |
|
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) |
|
|
|
return train_loader, test_loader |
|
|
|
|
|
def CIFAR100DataLoader(data_dir, batch_size, img_size=32): |
|
train_transform = transforms.Compose([ |
|
transforms.Resize(img_size), |
|
transforms.RandomCrop(32, padding=4), |
|
transforms.RandomHorizontalFlip(), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
|
]) |
|
train_dataset = datasets.CIFAR100(root=data_dir, train=True, |
|
download=True, transform=train_transform) |
|
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) |
|
|
|
test_transform = transforms.Compose([ |
|
transforms.Resize(img_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
|
]) |
|
test_dataset = datasets.CIFAR100(root=data_dir, train=False, |
|
download=True, transform=test_transform) |
|
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) |
|
|
|
return train_loader, test_loader |
|
|
|
|
|
def ImageNetDataLoader(train_data_root, val_data_root, batch_size=128, num_workers=8): |
|
|
|
|
|
img_size = 224 |
|
|
|
train_transform = transforms.Compose([ |
|
transforms.RandomResizedCrop(img_size), |
|
transforms.RandomHorizontalFlip(), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
train_dataset = ImageFolder(train_data_root, transform=train_transform) |
|
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True) |
|
|
|
test_transform = transforms.Compose([ |
|
transforms.Resize(256), |
|
transforms.CenterCrop(img_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
test_dataset = ImageFolder(val_data_root, transform=test_transform) |
|
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True) |
|
|
|
return train_loader, test_loader |
|
|