import torchvision.transforms as transforms from torchvision import datasets from torch.utils.data import DataLoader from torchvision.datasets import ImageFolder def MNISTDataLoader(data_dir, batch_size, img_size=32): train_transform = transforms.Compose([ transforms.Resize(img_size), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = datasets.MNIST(root=data_dir, train=True, download=True, transform=train_transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_transform = transforms.Compose([ transforms.Resize(img_size), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) test_dataset = datasets.MNIST(root=data_dir, train=False, transform=test_transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) return train_loader, test_loader def CIFAR10DataLoader(data_dir, batch_size, img_size=32): train_transform = transforms.Compose([ transforms.Resize(img_size), transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = datasets.CIFAR10(root=data_dir, train=True, download=True, transform=train_transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_transform = transforms.Compose([ transforms.Resize(img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) test_dataset = datasets.CIFAR10(root=data_dir, train=False, download=True, transform=test_transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) return train_loader, test_loader def CIFAR100DataLoader(data_dir, batch_size, img_size=32): train_transform = transforms.Compose([ transforms.Resize(img_size), transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = datasets.CIFAR100(root=data_dir, train=True, download=True, transform=train_transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_transform = transforms.Compose([ transforms.Resize(img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) test_dataset = datasets.CIFAR100(root=data_dir, train=False, download=True, transform=test_transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) return train_loader, test_loader def ImageNetDataLoader(train_data_root, val_data_root, batch_size=128, num_workers=8): # https://github.com/floydhub/imagenet/blob/master/main.py img_size = 224 train_transform = transforms.Compose([ transforms.RandomResizedCrop(img_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_dataset = ImageFolder(train_data_root, transform=train_transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True) test_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) test_dataset = ImageFolder(val_data_root, transform=test_transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True) return train_loader, test_loader