Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule | |
from mmengine.model import BaseModule | |
from mmengine.runner import CheckpointLoader | |
from torch import Tensor | |
from mmseg.registry import MODELS | |
from mmseg.utils import OptConfigType | |
from ..utils import DAPPM, PAPPM, BasicBlock, Bottleneck | |
class PagFM(BaseModule): | |
"""Pixel-attention-guided fusion module. | |
Args: | |
in_channels (int): The number of input channels. | |
channels (int): The number of channels. | |
after_relu (bool): Whether to use ReLU before attention. | |
Default: False. | |
with_channel (bool): Whether to use channel attention. | |
Default: False. | |
upsample_mode (str): The mode of upsample. Default: 'bilinear'. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(typ='ReLU', inplace=True). | |
init_cfg (dict): Config dict for initialization. Default: None. | |
""" | |
def __init__(self, | |
in_channels: int, | |
channels: int, | |
after_relu: bool = False, | |
with_channel: bool = False, | |
upsample_mode: str = 'bilinear', | |
norm_cfg: OptConfigType = dict(type='BN'), | |
act_cfg: OptConfigType = dict(typ='ReLU', inplace=True), | |
init_cfg: OptConfigType = None): | |
super().__init__(init_cfg) | |
self.after_relu = after_relu | |
self.with_channel = with_channel | |
self.upsample_mode = upsample_mode | |
self.f_i = ConvModule( | |
in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=None) | |
self.f_p = ConvModule( | |
in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=None) | |
if with_channel: | |
self.up = ConvModule( | |
channels, in_channels, 1, norm_cfg=norm_cfg, act_cfg=None) | |
if after_relu: | |
self.relu = MODELS.build(act_cfg) | |
def forward(self, x_p: Tensor, x_i: Tensor) -> Tensor: | |
"""Forward function. | |
Args: | |
x_p (Tensor): The featrue map from P branch. | |
x_i (Tensor): The featrue map from I branch. | |
Returns: | |
Tensor: The feature map with pixel-attention-guided fusion. | |
""" | |
if self.after_relu: | |
x_p = self.relu(x_p) | |
x_i = self.relu(x_i) | |
f_i = self.f_i(x_i) | |
f_i = F.interpolate( | |
f_i, | |
size=x_p.shape[2:], | |
mode=self.upsample_mode, | |
align_corners=False) | |
f_p = self.f_p(x_p) | |
if self.with_channel: | |
sigma = torch.sigmoid(self.up(f_p * f_i)) | |
else: | |
sigma = torch.sigmoid(torch.sum(f_p * f_i, dim=1).unsqueeze(1)) | |
x_i = F.interpolate( | |
x_i, | |
size=x_p.shape[2:], | |
mode=self.upsample_mode, | |
align_corners=False) | |
out = sigma * x_i + (1 - sigma) * x_p | |
return out | |
class Bag(BaseModule): | |
"""Boundary-attention-guided fusion module. | |
Args: | |
in_channels (int): The number of input channels. | |
out_channels (int): The number of output channels. | |
kernel_size (int): The kernel size of the convolution. Default: 3. | |
padding (int): The padding of the convolution. Default: 1. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU', inplace=True). | |
conv_cfg (dict): Config dict for convolution layer. | |
Default: dict(order=('norm', 'act', 'conv')). | |
init_cfg (dict): Config dict for initialization. Default: None. | |
""" | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int = 3, | |
padding: int = 1, | |
norm_cfg: OptConfigType = dict(type='BN'), | |
act_cfg: OptConfigType = dict(type='ReLU', inplace=True), | |
conv_cfg: OptConfigType = dict(order=('norm', 'act', 'conv')), | |
init_cfg: OptConfigType = None): | |
super().__init__(init_cfg) | |
self.conv = ConvModule( | |
in_channels, | |
out_channels, | |
kernel_size, | |
padding=padding, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
**conv_cfg) | |
def forward(self, x_p: Tensor, x_i: Tensor, x_d: Tensor) -> Tensor: | |
"""Forward function. | |
Args: | |
x_p (Tensor): The featrue map from P branch. | |
x_i (Tensor): The featrue map from I branch. | |
x_d (Tensor): The featrue map from D branch. | |
Returns: | |
Tensor: The feature map with boundary-attention-guided fusion. | |
""" | |
sigma = torch.sigmoid(x_d) | |
return self.conv(sigma * x_p + (1 - sigma) * x_i) | |
class LightBag(BaseModule): | |
"""Light Boundary-attention-guided fusion module. | |
Args: | |
in_channels (int): The number of input channels. | |
out_channels (int): The number of output channels. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. Default: None. | |
init_cfg (dict): Config dict for initialization. Default: None. | |
""" | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
norm_cfg: OptConfigType = dict(type='BN'), | |
act_cfg: OptConfigType = None, | |
init_cfg: OptConfigType = None): | |
super().__init__(init_cfg) | |
self.f_p = ConvModule( | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
self.f_i = ConvModule( | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
def forward(self, x_p: Tensor, x_i: Tensor, x_d: Tensor) -> Tensor: | |
"""Forward function. | |
Args: | |
x_p (Tensor): The featrue map from P branch. | |
x_i (Tensor): The featrue map from I branch. | |
x_d (Tensor): The featrue map from D branch. | |
Returns: | |
Tensor: The feature map with light boundary-attention-guided | |
fusion. | |
""" | |
sigma = torch.sigmoid(x_d) | |
f_p = self.f_p((1 - sigma) * x_i + x_p) | |
f_i = self.f_i(x_i + sigma * x_p) | |
return f_p + f_i | |
class PIDNet(BaseModule): | |
"""PIDNet backbone. | |
This backbone is the implementation of `PIDNet: A Real-time Semantic | |
Segmentation Network Inspired from PID Controller | |
<https://arxiv.org/abs/2206.02066>`_. | |
Modified from https://github.com/XuJiacong/PIDNet. | |
Licensed under the MIT License. | |
Args: | |
in_channels (int): The number of input channels. Default: 3. | |
channels (int): The number of channels in the stem layer. Default: 64. | |
ppm_channels (int): The number of channels in the PPM layer. | |
Default: 96. | |
num_stem_blocks (int): The number of blocks in the stem layer. | |
Default: 2. | |
num_branch_blocks (int): The number of blocks in the branch layer. | |
Default: 3. | |
align_corners (bool): The align_corners argument of F.interpolate. | |
Default: False. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU', inplace=True). | |
init_cfg (dict): Config dict for initialization. Default: None. | |
""" | |
def __init__(self, | |
in_channels: int = 3, | |
channels: int = 64, | |
ppm_channels: int = 96, | |
num_stem_blocks: int = 2, | |
num_branch_blocks: int = 3, | |
align_corners: bool = False, | |
norm_cfg: OptConfigType = dict(type='BN'), | |
act_cfg: OptConfigType = dict(type='ReLU', inplace=True), | |
init_cfg: OptConfigType = None, | |
**kwargs): | |
super().__init__(init_cfg) | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.align_corners = align_corners | |
# stem layer | |
self.stem = self._make_stem_layer(in_channels, channels, | |
num_stem_blocks) | |
self.relu = nn.ReLU() | |
# I Branch | |
self.i_branch_layers = nn.ModuleList() | |
for i in range(3): | |
self.i_branch_layers.append( | |
self._make_layer( | |
block=BasicBlock if i < 2 else Bottleneck, | |
in_channels=channels * 2**(i + 1), | |
channels=channels * 8 if i > 0 else channels * 4, | |
num_blocks=num_branch_blocks if i < 2 else 2, | |
stride=2)) | |
# P Branch | |
self.p_branch_layers = nn.ModuleList() | |
for i in range(3): | |
self.p_branch_layers.append( | |
self._make_layer( | |
block=BasicBlock if i < 2 else Bottleneck, | |
in_channels=channels * 2, | |
channels=channels * 2, | |
num_blocks=num_stem_blocks if i < 2 else 1)) | |
self.compression_1 = ConvModule( | |
channels * 4, | |
channels * 2, | |
kernel_size=1, | |
bias=False, | |
norm_cfg=norm_cfg, | |
act_cfg=None) | |
self.compression_2 = ConvModule( | |
channels * 8, | |
channels * 2, | |
kernel_size=1, | |
bias=False, | |
norm_cfg=norm_cfg, | |
act_cfg=None) | |
self.pag_1 = PagFM(channels * 2, channels) | |
self.pag_2 = PagFM(channels * 2, channels) | |
# D Branch | |
if num_stem_blocks == 2: | |
self.d_branch_layers = nn.ModuleList([ | |
self._make_single_layer(BasicBlock, channels * 2, channels), | |
self._make_layer(Bottleneck, channels, channels, 1) | |
]) | |
channel_expand = 1 | |
spp_module = PAPPM | |
dfm_module = LightBag | |
act_cfg_dfm = None | |
else: | |
self.d_branch_layers = nn.ModuleList([ | |
self._make_single_layer(BasicBlock, channels * 2, | |
channels * 2), | |
self._make_single_layer(BasicBlock, channels * 2, channels * 2) | |
]) | |
channel_expand = 2 | |
spp_module = DAPPM | |
dfm_module = Bag | |
act_cfg_dfm = act_cfg | |
self.diff_1 = ConvModule( | |
channels * 4, | |
channels * channel_expand, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
norm_cfg=norm_cfg, | |
act_cfg=None) | |
self.diff_2 = ConvModule( | |
channels * 8, | |
channels * 2, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
norm_cfg=norm_cfg, | |
act_cfg=None) | |
self.spp = spp_module( | |
channels * 16, ppm_channels, channels * 4, num_scales=5) | |
self.dfm = dfm_module( | |
channels * 4, channels * 4, norm_cfg=norm_cfg, act_cfg=act_cfg_dfm) | |
self.d_branch_layers.append( | |
self._make_layer(Bottleneck, channels * 2, channels * 2, 1)) | |
def _make_stem_layer(self, in_channels: int, channels: int, | |
num_blocks: int) -> nn.Sequential: | |
"""Make stem layer. | |
Args: | |
in_channels (int): Number of input channels. | |
channels (int): Number of output channels. | |
num_blocks (int): Number of blocks. | |
Returns: | |
nn.Sequential: The stem layer. | |
""" | |
layers = [ | |
ConvModule( | |
in_channels, | |
channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg), | |
ConvModule( | |
channels, | |
channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
] | |
layers.append( | |
self._make_layer(BasicBlock, channels, channels, num_blocks)) | |
layers.append(nn.ReLU()) | |
layers.append( | |
self._make_layer( | |
BasicBlock, channels, channels * 2, num_blocks, stride=2)) | |
layers.append(nn.ReLU()) | |
return nn.Sequential(*layers) | |
def _make_layer(self, | |
block: BasicBlock, | |
in_channels: int, | |
channels: int, | |
num_blocks: int, | |
stride: int = 1) -> nn.Sequential: | |
"""Make layer for PIDNet backbone. | |
Args: | |
block (BasicBlock): Basic block. | |
in_channels (int): Number of input channels. | |
channels (int): Number of output channels. | |
num_blocks (int): Number of blocks. | |
stride (int): Stride of the first block. Default: 1. | |
Returns: | |
nn.Sequential: The Branch Layer. | |
""" | |
downsample = None | |
if stride != 1 or in_channels != channels * block.expansion: | |
downsample = ConvModule( | |
in_channels, | |
channels * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
norm_cfg=self.norm_cfg, | |
act_cfg=None) | |
layers = [block(in_channels, channels, stride, downsample)] | |
in_channels = channels * block.expansion | |
for i in range(1, num_blocks): | |
layers.append( | |
block( | |
in_channels, | |
channels, | |
stride=1, | |
act_cfg_out=None if i == num_blocks - 1 else self.act_cfg)) | |
return nn.Sequential(*layers) | |
def _make_single_layer(self, | |
block: Union[BasicBlock, Bottleneck], | |
in_channels: int, | |
channels: int, | |
stride: int = 1) -> nn.Module: | |
"""Make single layer for PIDNet backbone. | |
Args: | |
block (BasicBlock or Bottleneck): Basic block or Bottleneck. | |
in_channels (int): Number of input channels. | |
channels (int): Number of output channels. | |
stride (int): Stride of the first block. Default: 1. | |
Returns: | |
nn.Module | |
""" | |
downsample = None | |
if stride != 1 or in_channels != channels * block.expansion: | |
downsample = ConvModule( | |
in_channels, | |
channels * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
norm_cfg=self.norm_cfg, | |
act_cfg=None) | |
return block( | |
in_channels, channels, stride, downsample, act_cfg_out=None) | |
def init_weights(self): | |
"""Initialize the weights in backbone. | |
Since the D branch is not initialized by the pre-trained model, we | |
initialize it with the same method as the ResNet. | |
""" | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_( | |
m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
if self.init_cfg is not None: | |
assert 'checkpoint' in self.init_cfg, f'Only support ' \ | |
f'specify `Pretrained` in ' \ | |
f'`init_cfg` in ' \ | |
f'{self.__class__.__name__} ' | |
ckpt = CheckpointLoader.load_checkpoint( | |
self.init_cfg['checkpoint'], map_location='cpu') | |
self.load_state_dict(ckpt, strict=False) | |
def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor]]: | |
"""Forward function. | |
Args: | |
x (Tensor): Input tensor with shape (B, C, H, W). | |
Returns: | |
Tensor or tuple[Tensor]: If self.training is True, return | |
tuple[Tensor], else return Tensor. | |
""" | |
w_out = x.shape[-1] // 8 | |
h_out = x.shape[-2] // 8 | |
# stage 0-2 | |
x = self.stem(x) | |
# stage 3 | |
x_i = self.relu(self.i_branch_layers[0](x)) | |
x_p = self.p_branch_layers[0](x) | |
x_d = self.d_branch_layers[0](x) | |
comp_i = self.compression_1(x_i) | |
x_p = self.pag_1(x_p, comp_i) | |
diff_i = self.diff_1(x_i) | |
x_d += F.interpolate( | |
diff_i, | |
size=[h_out, w_out], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
if self.training: | |
temp_p = x_p.clone() | |
# stage 4 | |
x_i = self.relu(self.i_branch_layers[1](x_i)) | |
x_p = self.p_branch_layers[1](self.relu(x_p)) | |
x_d = self.d_branch_layers[1](self.relu(x_d)) | |
comp_i = self.compression_2(x_i) | |
x_p = self.pag_2(x_p, comp_i) | |
diff_i = self.diff_2(x_i) | |
x_d += F.interpolate( | |
diff_i, | |
size=[h_out, w_out], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
if self.training: | |
temp_d = x_d.clone() | |
# stage 5 | |
x_i = self.i_branch_layers[2](x_i) | |
x_p = self.p_branch_layers[2](self.relu(x_p)) | |
x_d = self.d_branch_layers[2](self.relu(x_d)) | |
x_i = self.spp(x_i) | |
x_i = F.interpolate( | |
x_i, | |
size=[h_out, w_out], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
out = self.dfm(x_p, x_i, x_d) | |
return (temp_p, out, temp_d) if self.training else out | |