Spaces:
Runtime error
Runtime error
File size: 18,234 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmengine.runner import CheckpointLoader
from torch import Tensor
from mmseg.registry import MODELS
from mmseg.utils import OptConfigType
from ..utils import DAPPM, PAPPM, BasicBlock, Bottleneck
class PagFM(BaseModule):
"""Pixel-attention-guided fusion module.
Args:
in_channels (int): The number of input channels.
channels (int): The number of channels.
after_relu (bool): Whether to use ReLU before attention.
Default: False.
with_channel (bool): Whether to use channel attention.
Default: False.
upsample_mode (str): The mode of upsample. Default: 'bilinear'.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(typ='ReLU', inplace=True).
init_cfg (dict): Config dict for initialization. Default: None.
"""
def __init__(self,
in_channels: int,
channels: int,
after_relu: bool = False,
with_channel: bool = False,
upsample_mode: str = 'bilinear',
norm_cfg: OptConfigType = dict(type='BN'),
act_cfg: OptConfigType = dict(typ='ReLU', inplace=True),
init_cfg: OptConfigType = None):
super().__init__(init_cfg)
self.after_relu = after_relu
self.with_channel = with_channel
self.upsample_mode = upsample_mode
self.f_i = ConvModule(
in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=None)
self.f_p = ConvModule(
in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=None)
if with_channel:
self.up = ConvModule(
channels, in_channels, 1, norm_cfg=norm_cfg, act_cfg=None)
if after_relu:
self.relu = MODELS.build(act_cfg)
def forward(self, x_p: Tensor, x_i: Tensor) -> Tensor:
"""Forward function.
Args:
x_p (Tensor): The featrue map from P branch.
x_i (Tensor): The featrue map from I branch.
Returns:
Tensor: The feature map with pixel-attention-guided fusion.
"""
if self.after_relu:
x_p = self.relu(x_p)
x_i = self.relu(x_i)
f_i = self.f_i(x_i)
f_i = F.interpolate(
f_i,
size=x_p.shape[2:],
mode=self.upsample_mode,
align_corners=False)
f_p = self.f_p(x_p)
if self.with_channel:
sigma = torch.sigmoid(self.up(f_p * f_i))
else:
sigma = torch.sigmoid(torch.sum(f_p * f_i, dim=1).unsqueeze(1))
x_i = F.interpolate(
x_i,
size=x_p.shape[2:],
mode=self.upsample_mode,
align_corners=False)
out = sigma * x_i + (1 - sigma) * x_p
return out
class Bag(BaseModule):
"""Boundary-attention-guided fusion module.
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
kernel_size (int): The kernel size of the convolution. Default: 3.
padding (int): The padding of the convolution. Default: 1.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU', inplace=True).
conv_cfg (dict): Config dict for convolution layer.
Default: dict(order=('norm', 'act', 'conv')).
init_cfg (dict): Config dict for initialization. Default: None.
"""
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
padding: int = 1,
norm_cfg: OptConfigType = dict(type='BN'),
act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
conv_cfg: OptConfigType = dict(order=('norm', 'act', 'conv')),
init_cfg: OptConfigType = None):
super().__init__(init_cfg)
self.conv = ConvModule(
in_channels,
out_channels,
kernel_size,
padding=padding,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**conv_cfg)
def forward(self, x_p: Tensor, x_i: Tensor, x_d: Tensor) -> Tensor:
"""Forward function.
Args:
x_p (Tensor): The featrue map from P branch.
x_i (Tensor): The featrue map from I branch.
x_d (Tensor): The featrue map from D branch.
Returns:
Tensor: The feature map with boundary-attention-guided fusion.
"""
sigma = torch.sigmoid(x_d)
return self.conv(sigma * x_p + (1 - sigma) * x_i)
class LightBag(BaseModule):
"""Light Boundary-attention-guided fusion module.
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer. Default: None.
init_cfg (dict): Config dict for initialization. Default: None.
"""
def __init__(self,
in_channels: int,
out_channels: int,
norm_cfg: OptConfigType = dict(type='BN'),
act_cfg: OptConfigType = None,
init_cfg: OptConfigType = None):
super().__init__(init_cfg)
self.f_p = ConvModule(
in_channels,
out_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.f_i = ConvModule(
in_channels,
out_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def forward(self, x_p: Tensor, x_i: Tensor, x_d: Tensor) -> Tensor:
"""Forward function.
Args:
x_p (Tensor): The featrue map from P branch.
x_i (Tensor): The featrue map from I branch.
x_d (Tensor): The featrue map from D branch.
Returns:
Tensor: The feature map with light boundary-attention-guided
fusion.
"""
sigma = torch.sigmoid(x_d)
f_p = self.f_p((1 - sigma) * x_i + x_p)
f_i = self.f_i(x_i + sigma * x_p)
return f_p + f_i
@MODELS.register_module()
class PIDNet(BaseModule):
"""PIDNet backbone.
This backbone is the implementation of `PIDNet: A Real-time Semantic
Segmentation Network Inspired from PID Controller
<https://arxiv.org/abs/2206.02066>`_.
Modified from https://github.com/XuJiacong/PIDNet.
Licensed under the MIT License.
Args:
in_channels (int): The number of input channels. Default: 3.
channels (int): The number of channels in the stem layer. Default: 64.
ppm_channels (int): The number of channels in the PPM layer.
Default: 96.
num_stem_blocks (int): The number of blocks in the stem layer.
Default: 2.
num_branch_blocks (int): The number of blocks in the branch layer.
Default: 3.
align_corners (bool): The align_corners argument of F.interpolate.
Default: False.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU', inplace=True).
init_cfg (dict): Config dict for initialization. Default: None.
"""
def __init__(self,
in_channels: int = 3,
channels: int = 64,
ppm_channels: int = 96,
num_stem_blocks: int = 2,
num_branch_blocks: int = 3,
align_corners: bool = False,
norm_cfg: OptConfigType = dict(type='BN'),
act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
init_cfg: OptConfigType = None,
**kwargs):
super().__init__(init_cfg)
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.align_corners = align_corners
# stem layer
self.stem = self._make_stem_layer(in_channels, channels,
num_stem_blocks)
self.relu = nn.ReLU()
# I Branch
self.i_branch_layers = nn.ModuleList()
for i in range(3):
self.i_branch_layers.append(
self._make_layer(
block=BasicBlock if i < 2 else Bottleneck,
in_channels=channels * 2**(i + 1),
channels=channels * 8 if i > 0 else channels * 4,
num_blocks=num_branch_blocks if i < 2 else 2,
stride=2))
# P Branch
self.p_branch_layers = nn.ModuleList()
for i in range(3):
self.p_branch_layers.append(
self._make_layer(
block=BasicBlock if i < 2 else Bottleneck,
in_channels=channels * 2,
channels=channels * 2,
num_blocks=num_stem_blocks if i < 2 else 1))
self.compression_1 = ConvModule(
channels * 4,
channels * 2,
kernel_size=1,
bias=False,
norm_cfg=norm_cfg,
act_cfg=None)
self.compression_2 = ConvModule(
channels * 8,
channels * 2,
kernel_size=1,
bias=False,
norm_cfg=norm_cfg,
act_cfg=None)
self.pag_1 = PagFM(channels * 2, channels)
self.pag_2 = PagFM(channels * 2, channels)
# D Branch
if num_stem_blocks == 2:
self.d_branch_layers = nn.ModuleList([
self._make_single_layer(BasicBlock, channels * 2, channels),
self._make_layer(Bottleneck, channels, channels, 1)
])
channel_expand = 1
spp_module = PAPPM
dfm_module = LightBag
act_cfg_dfm = None
else:
self.d_branch_layers = nn.ModuleList([
self._make_single_layer(BasicBlock, channels * 2,
channels * 2),
self._make_single_layer(BasicBlock, channels * 2, channels * 2)
])
channel_expand = 2
spp_module = DAPPM
dfm_module = Bag
act_cfg_dfm = act_cfg
self.diff_1 = ConvModule(
channels * 4,
channels * channel_expand,
kernel_size=3,
padding=1,
bias=False,
norm_cfg=norm_cfg,
act_cfg=None)
self.diff_2 = ConvModule(
channels * 8,
channels * 2,
kernel_size=3,
padding=1,
bias=False,
norm_cfg=norm_cfg,
act_cfg=None)
self.spp = spp_module(
channels * 16, ppm_channels, channels * 4, num_scales=5)
self.dfm = dfm_module(
channels * 4, channels * 4, norm_cfg=norm_cfg, act_cfg=act_cfg_dfm)
self.d_branch_layers.append(
self._make_layer(Bottleneck, channels * 2, channels * 2, 1))
def _make_stem_layer(self, in_channels: int, channels: int,
num_blocks: int) -> nn.Sequential:
"""Make stem layer.
Args:
in_channels (int): Number of input channels.
channels (int): Number of output channels.
num_blocks (int): Number of blocks.
Returns:
nn.Sequential: The stem layer.
"""
layers = [
ConvModule(
in_channels,
channels,
kernel_size=3,
stride=2,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
ConvModule(
channels,
channels,
kernel_size=3,
stride=2,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
]
layers.append(
self._make_layer(BasicBlock, channels, channels, num_blocks))
layers.append(nn.ReLU())
layers.append(
self._make_layer(
BasicBlock, channels, channels * 2, num_blocks, stride=2))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def _make_layer(self,
block: BasicBlock,
in_channels: int,
channels: int,
num_blocks: int,
stride: int = 1) -> nn.Sequential:
"""Make layer for PIDNet backbone.
Args:
block (BasicBlock): Basic block.
in_channels (int): Number of input channels.
channels (int): Number of output channels.
num_blocks (int): Number of blocks.
stride (int): Stride of the first block. Default: 1.
Returns:
nn.Sequential: The Branch Layer.
"""
downsample = None
if stride != 1 or in_channels != channels * block.expansion:
downsample = ConvModule(
in_channels,
channels * block.expansion,
kernel_size=1,
stride=stride,
norm_cfg=self.norm_cfg,
act_cfg=None)
layers = [block(in_channels, channels, stride, downsample)]
in_channels = channels * block.expansion
for i in range(1, num_blocks):
layers.append(
block(
in_channels,
channels,
stride=1,
act_cfg_out=None if i == num_blocks - 1 else self.act_cfg))
return nn.Sequential(*layers)
def _make_single_layer(self,
block: Union[BasicBlock, Bottleneck],
in_channels: int,
channels: int,
stride: int = 1) -> nn.Module:
"""Make single layer for PIDNet backbone.
Args:
block (BasicBlock or Bottleneck): Basic block or Bottleneck.
in_channels (int): Number of input channels.
channels (int): Number of output channels.
stride (int): Stride of the first block. Default: 1.
Returns:
nn.Module
"""
downsample = None
if stride != 1 or in_channels != channels * block.expansion:
downsample = ConvModule(
in_channels,
channels * block.expansion,
kernel_size=1,
stride=stride,
norm_cfg=self.norm_cfg,
act_cfg=None)
return block(
in_channels, channels, stride, downsample, act_cfg_out=None)
def init_weights(self):
"""Initialize the weights in backbone.
Since the D branch is not initialized by the pre-trained model, we
initialize it with the same method as the ResNet.
"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if self.init_cfg is not None:
assert 'checkpoint' in self.init_cfg, f'Only support ' \
f'specify `Pretrained` in ' \
f'`init_cfg` in ' \
f'{self.__class__.__name__} '
ckpt = CheckpointLoader.load_checkpoint(
self.init_cfg['checkpoint'], map_location='cpu')
self.load_state_dict(ckpt, strict=False)
def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor]]:
"""Forward function.
Args:
x (Tensor): Input tensor with shape (B, C, H, W).
Returns:
Tensor or tuple[Tensor]: If self.training is True, return
tuple[Tensor], else return Tensor.
"""
w_out = x.shape[-1] // 8
h_out = x.shape[-2] // 8
# stage 0-2
x = self.stem(x)
# stage 3
x_i = self.relu(self.i_branch_layers[0](x))
x_p = self.p_branch_layers[0](x)
x_d = self.d_branch_layers[0](x)
comp_i = self.compression_1(x_i)
x_p = self.pag_1(x_p, comp_i)
diff_i = self.diff_1(x_i)
x_d += F.interpolate(
diff_i,
size=[h_out, w_out],
mode='bilinear',
align_corners=self.align_corners)
if self.training:
temp_p = x_p.clone()
# stage 4
x_i = self.relu(self.i_branch_layers[1](x_i))
x_p = self.p_branch_layers[1](self.relu(x_p))
x_d = self.d_branch_layers[1](self.relu(x_d))
comp_i = self.compression_2(x_i)
x_p = self.pag_2(x_p, comp_i)
diff_i = self.diff_2(x_i)
x_d += F.interpolate(
diff_i,
size=[h_out, w_out],
mode='bilinear',
align_corners=self.align_corners)
if self.training:
temp_d = x_d.clone()
# stage 5
x_i = self.i_branch_layers[2](x_i)
x_p = self.p_branch_layers[2](self.relu(x_p))
x_d = self.d_branch_layers[2](self.relu(x_d))
x_i = self.spp(x_i)
x_i = F.interpolate(
x_i,
size=[h_out, w_out],
mode='bilinear',
align_corners=self.align_corners)
out = self.dfm(x_p, x_i, x_d)
return (temp_p, out, temp_d) if self.training else out
|