KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import random
import re
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from mmengine.logging import MMLogger
from mmengine.model import BaseModel
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample
@MODELS.register_module()
class MiniGPT4(BaseModel):
"""The multi-modality model of MiniGPT-4.
The implementation of `MiniGPT-4 <https://arxiv.org/abs/2304.10592>`_.
Modified from https://github.com/Vision-CAIR/MiniGPT-4/blob/main/minigpt4/models/mini_gpt4.py
Args:
vision_encoder (dict): The config for vision encoder.
q_former_model (dict): The config for Qformer.
lang_encoder (dict): The config for language model.
tokenizer (dict): The config for tokenizer.
task (str): To define the task, which control the processing of text.
Defaults to 'caption'.
freeze_vit (bool): Freeze the training of ViT. Defaults to True.
freeze_q_former (bool): Freeze the training of Qformer. Defaults to
True.
num_query_token (int): Number of query tokens of Qformer. Defaults to
32.
prompt_template (dict): Multi-language prompt template of the model. Defaults to dict([ ('en', '###Ask: {} ###Answer: '),
('zh', '###问:{} ###答:')])
raw_prompts (dict): Prompts for training. Defaults to dict().
max_txt_len (int): Max token length while doing tokenization. Defaults
to 32.
end_sym (str): Ended symbol of the sequence. Defaults to '###'.
generation_cfg (dict): The config of text generation. Defaults to
dict().
data_preprocessor (:obj:`BaseDataPreprocessor`): Used for
pre-processing data sampled by dataloader to the format accepted by
:meth:`forward`. Defaults to None.
init_cfg (dict): Initialization config dict. Defaults to None.
""" # noqa
def __init__(self,
vision_encoder: dict,
q_former_model: dict,
lang_encoder: dict,
tokenizer: dict,
task: str = 'caption',
freeze_vit: bool = True,
freeze_q_former: bool = True,
num_query_token: int = 32,
prompt_template: dict = dict([('en',
'###Ask: {} ###Answer: '),
('zh', '###问:{} ###答:')]),
raw_prompts: dict = dict(),
max_txt_len: int = 32,
end_sym: str = '###',
generation_cfg: dict = dict(),
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[dict] = None):
if data_preprocessor is None:
data_preprocessor = {}
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
data_preprocessor = MODELS.build(data_preprocessor)
super().__init__(
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
self.task = task
logger = MMLogger.get_current_instance()
# build vision model
vision_encoder_weight = vision_encoder.pop('pretrained', None)
self.vision_encoder = MODELS.build(vision_encoder)
self.ln_vision = nn.LayerNorm(self.vision_encoder.embed_dims)
if vision_encoder_weight is not None:
from mmengine.runner.checkpoint import load_checkpoint
load_checkpoint(self.vision_encoder, vision_encoder_weight)
self.vision_encoder.is_init = True
if freeze_vit:
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
else:
logger.warning('Please check `frozen_stages` in the dict of'
'`vision_encoder`. Also set it to be -1 if do not'
'freeze ViT.')
# build Qformer
q_former_model_weight = q_former_model.pop('pretrained', None)
self.q_former = MODELS.build(q_former_model)
self.q_former.cls = None
self.q_former.bert.embeddings.word_embeddings = None
self.q_former.bert.embeddings.position_embeddings = None
for layer in self.q_former.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, self.q_former.config.hidden_size))
self.query_tokens.data.normal_(
mean=0.0, std=self.q_former.config.initializer_range)
if q_former_model_weight is not None:
from mmengine.runner.checkpoint import CheckpointLoader
state_dict = CheckpointLoader.load_checkpoint(
q_former_model_weight)['state_dict']
self.load_state_dict(state_dict, strict=False)
# The ln_vision weights are also in the q-former checkpoint.
setattr(self.ln_vision, 'is_init', True)
setattr(self.q_former, 'is_init', True)
if freeze_q_former:
for name, param in self.q_former.named_parameters():
param.requires_grad = False
self.q_former.eval()
self.query_tokens.requires_grad = False
# build language model
self.llama_tokenizer = TOKENIZER.build(tokenizer)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_model = MODELS.build(lang_encoder)
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
# build linear projection layer
self.llama_proj = nn.Linear(self.q_former.config.hidden_size,
self.llama_model.config.hidden_size)
self.max_txt_len = max_txt_len
self.end_sym = end_sym
self.end_token_id = self.llama_tokenizer.encode(end_sym)[-1]
# set prompts
self.en_prompt_list, self.zh_prompt_list = [], []
if raw_prompts.get('en') is not None:
en_filted_prompts = [
raw_prompt for raw_prompt in raw_prompts['en']
if '<ImageHere>' in raw_prompt
]
self.en_prompt_list = [
prompt_template['en'].format(p) for p in en_filted_prompts
]
if raw_prompts.get('zh') is not None:
zh_filted_prompts = [
raw_prompt for raw_prompt in raw_prompts['zh']
if '<ImageHere>' in raw_prompt
]
self.zh_prompt_list = [
prompt_template['zh'].format(p) for p in zh_filted_prompts
]
# update generation configs
self.generation_cfg = dict(
max_new_tokens=300,
num_beams=1,
do_sample=True,
min_length=1,
top_p=0.9,
repetition_penalty=1.1,
length_penalty=1.0,
temperature=1.0)
self.generation_cfg.update(**generation_cfg)
if hasattr(self, 'register_load_state_dict_post_hook'):
self.register_load_state_dict_post_hook(self._load_llama_proj_hook)
def half(self):
self.llama_model = self.llama_model.half()
return self
def encode_img(self,
images: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""The function to encode the images."""
device = images.device
x = self.vision_encoder(images)[0]
image_embeds = self.ln_vision(x).to(device)
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.q_former.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_llama = self.llama_proj(query_output.last_hidden_state)
atts_llama = torch.ones(
inputs_llama.size()[:-1], dtype=torch.long).to(images.device)
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds: torch.Tensor, atts_img: torch.Tensor,
prompt: List[str]) -> Tuple[torch.Tensor, torch.Tensor]:
"""The function to wrap the image and prompt.
Make sure that len(prompt) == img_embeds.shape[0].
Args:
img_embeds (torch.Tensor): The embedding of the input images.
atts_img (torch.Tensor): Attention map of the image embeddings.
prompt (List[str]): The prompt of the batch data.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The embedding and attention map.
"""
if len(prompt) > 0:
p_before_list, p_after_list = [], []
for pro in prompt:
p_before, p_after = pro.split('<ImageHere>')
p_before_list.append(p_before)
p_after_list.append(p_after)
p_before_tokens = self.llama_tokenizer(
p_before_list,
return_tensors='pt',
padding='longest',
add_special_tokens=False).to(img_embeds.device)
p_after_tokens = self.llama_tokenizer(
p_after_list,
return_tensors='pt',
padding='longest',
add_special_tokens=False).to(img_embeds.device)
p_before_embeds = self.llama_model.model.embed_tokens(
p_before_tokens.input_ids)
p_after_embeds = self.llama_model.model.embed_tokens(
p_after_tokens.input_ids)
wrapped_img_embeds = torch.cat(
[p_before_embeds, img_embeds, p_after_embeds], dim=1)
wrapped_atts_img = atts_img[:, :1].expand(
-1, wrapped_img_embeds.shape[1])
return wrapped_img_embeds, wrapped_atts_img
else:
return img_embeds, atts_img
def loss(self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None) -> dict:
"""The forward function in training.
Args:
inputs (List[torch.Tensor]): The input images.
data_samples (List[DataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
img_embeds, atts_img = self.encode_img(images)
self.llama_tokenizer.padding_side = 'right'
prompts, texts = [], []
for t in data_samples:
chat_content = t.chat_content
split_mark = '###Answer: ' if t.lang == 'en' else '###答:'
prompt, text = chat_content.split(split_mark)
prompt += split_mark
text += self.end_sym
prompts.append(prompt)
texts.append(text)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompts)
to_regress_tokens = self.llama_tokenizer(
texts,
return_tensors='pt',
padding='longest',
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False).to(images.device)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id,
-100)
empty_targets = (
torch.ones([atts_img.shape[0], atts_img.shape[1] + 1],
dtype=torch.long).to(images.device).fill_(
-100) # plus one for bos
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device
) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos)
atts_bos = atts_img[:, :1]
to_regress_embeds = self.llama_model.model.embed_tokens(
to_regress_tokens.input_ids)
inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds],
dim=1)
attention_mask = torch.cat(
[atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return dict(loss=loss)
def predict(
self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None
) -> List[DataSample]:
with torch.no_grad():
img_embeds, atts_img = self.encode_img(images)
prompts = [
random.choice(self.zh_prompt_list) if hasattr(t, 'lang')
and t.lang == 'zh' else random.choice(self.en_prompt_list)
for t in data_samples
]
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompts)
batch_size = img_embeds.shape[0]
bos = torch.ones(
[batch_size, 1], dtype=torch.long,
device=img_embeds.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos)
inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1)
outputs = self.llama_model.generate(
inputs_embeds=inputs_embeds,
eos_token_id=self.end_token_id,
**self.generation_cfg)
return self.post_process(outputs, data_samples)
def post_process(
self, outputs: torch.Tensor,
data_samples: Optional[List[DataSample]]) -> List[DataSample]:
"""Perform post process for outputs for different task.
Args:
outputs (torch.Tensor): The generated outputs.
data_samples (List[DataSample], optional): The annotation
data of every samples.
Returns:
List[DataSample]: Return list of data samples.
"""
outputs = self.llama_tokenizer.batch_decode(
outputs, skip_special_tokens=True)
if data_samples is None:
data_samples = [DataSample() for _ in range(len(outputs))]
for output, data_sample in zip(outputs, data_samples):
if self.task == 'caption':
output = output.split('###')[0]
data_sample.pred_caption = output
else:
# raw output
data_sample.pred_output = output
return data_samples
def forward(
self,
images: torch.Tensor,
data_samples: Optional[list] = None,
mode: str = 'predict',
**kwargs,
):
"""The unified entry for a forward process in both training and test.
The method accepts the following modes:
- "predict": Forward and return a list of data samples contain the
predict results.
Args:
images (torch.Tensor): the preprocessed image tensor of shape
``(N, C, H, W)``.
data_samples (List[DataSample], optional): The annotation data
of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to 'predict'.
"""
if mode == 'loss':
return self.loss(images, data_samples)
elif mode == 'predict':
return self.predict(images, data_samples, **kwargs)
else:
raise RuntimeError(f'Invalid mode "{mode}".')
@staticmethod
def _load_llama_proj_hook(module, incompatible_keys):
"""Avoid warning missing keys except LLaMA projection keys."""
proj_patterns = [
'vision_encoder.*',
'ln_vision.*',
'q_former.*',
'query_tokens',
'llama_model.*',
]
for key in list(incompatible_keys.missing_keys):
if any(re.match(pattern, key) for pattern in proj_patterns):
incompatible_keys.missing_keys.remove(key)