File size: 16,465 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# Copyright (c) OpenMMLab. All rights reserved.
import random
import re
from typing import List, Optional, Tuple

import torch
import torch.nn as nn
from mmengine.logging import MMLogger
from mmengine.model import BaseModel

from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample


@MODELS.register_module()
class MiniGPT4(BaseModel):
    """The multi-modality model of MiniGPT-4.

    The implementation of `MiniGPT-4 <https://arxiv.org/abs/2304.10592>`_.
    Modified from https://github.com/Vision-CAIR/MiniGPT-4/blob/main/minigpt4/models/mini_gpt4.py

    Args:
        vision_encoder (dict): The config for vision encoder.
        q_former_model (dict): The config for Qformer.
        lang_encoder (dict): The config for language model.
        tokenizer (dict): The config for tokenizer.
        task (str): To define the task, which control the processing of text.
            Defaults to 'caption'.
        freeze_vit (bool): Freeze the training of ViT. Defaults to True.
        freeze_q_former (bool): Freeze the training of Qformer. Defaults to
            True.
        num_query_token (int): Number of query tokens of Qformer. Defaults to
            32.
        prompt_template (dict): Multi-language prompt template of the model. Defaults to dict([ ('en', '###Ask: {} ###Answer: '),
                                                                                                ('zh', '###问:{} ###答:')])
        raw_prompts (dict): Prompts for training. Defaults to dict().
        max_txt_len (int): Max token length while doing tokenization. Defaults
            to 32.
        end_sym (str): Ended symbol of the sequence. Defaults to '###'.
        generation_cfg (dict): The config of text generation. Defaults to
            dict().
        data_preprocessor (:obj:`BaseDataPreprocessor`): Used for
            pre-processing data sampled by dataloader to the format accepted by
            :meth:`forward`. Defaults to None.
        init_cfg (dict): Initialization config dict. Defaults to None.
    """ # noqa

    def __init__(self,
                 vision_encoder: dict,
                 q_former_model: dict,
                 lang_encoder: dict,
                 tokenizer: dict,
                 task: str = 'caption',
                 freeze_vit: bool = True,
                 freeze_q_former: bool = True,
                 num_query_token: int = 32,
                 prompt_template: dict = dict([('en',
                                                '###Ask: {} ###Answer: '),
                                               ('zh', '###问:{} ###答:')]),
                 raw_prompts: dict = dict(),
                 max_txt_len: int = 32,
                 end_sym: str = '###',
                 generation_cfg: dict = dict(),
                 data_preprocessor: Optional[dict] = None,
                 init_cfg: Optional[dict] = None):
        if data_preprocessor is None:
            data_preprocessor = {}
        data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
        data_preprocessor = MODELS.build(data_preprocessor)

        super().__init__(
            data_preprocessor=data_preprocessor, init_cfg=init_cfg)
        self.task = task
        logger = MMLogger.get_current_instance()

        # build vision model
        vision_encoder_weight = vision_encoder.pop('pretrained', None)
        self.vision_encoder = MODELS.build(vision_encoder)
        self.ln_vision = nn.LayerNorm(self.vision_encoder.embed_dims)

        if vision_encoder_weight is not None:
            from mmengine.runner.checkpoint import load_checkpoint
            load_checkpoint(self.vision_encoder, vision_encoder_weight)
            self.vision_encoder.is_init = True
        if freeze_vit:
            for name, param in self.ln_vision.named_parameters():
                param.requires_grad = False
            self.ln_vision = self.ln_vision.eval()
        else:
            logger.warning('Please check `frozen_stages` in the dict of'
                           '`vision_encoder`. Also set it to be -1 if do not'
                           'freeze ViT.')

        # build Qformer
        q_former_model_weight = q_former_model.pop('pretrained', None)
        self.q_former = MODELS.build(q_former_model)
        self.q_former.cls = None
        self.q_former.bert.embeddings.word_embeddings = None
        self.q_former.bert.embeddings.position_embeddings = None
        for layer in self.q_former.bert.encoder.layer:
            layer.output = None
            layer.intermediate = None

        self.query_tokens = nn.Parameter(
            torch.zeros(1, num_query_token, self.q_former.config.hidden_size))
        self.query_tokens.data.normal_(
            mean=0.0, std=self.q_former.config.initializer_range)

        if q_former_model_weight is not None:
            from mmengine.runner.checkpoint import CheckpointLoader
            state_dict = CheckpointLoader.load_checkpoint(
                q_former_model_weight)['state_dict']
            self.load_state_dict(state_dict, strict=False)
            # The ln_vision weights are also in the q-former checkpoint.
            setattr(self.ln_vision, 'is_init', True)
            setattr(self.q_former, 'is_init', True)

        if freeze_q_former:
            for name, param in self.q_former.named_parameters():
                param.requires_grad = False
            self.q_former.eval()
            self.query_tokens.requires_grad = False

        # build language model
        self.llama_tokenizer = TOKENIZER.build(tokenizer)
        self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token

        self.llama_model = MODELS.build(lang_encoder)
        for name, param in self.llama_model.named_parameters():
            param.requires_grad = False

        # build linear projection layer
        self.llama_proj = nn.Linear(self.q_former.config.hidden_size,
                                    self.llama_model.config.hidden_size)
        self.max_txt_len = max_txt_len
        self.end_sym = end_sym
        self.end_token_id = self.llama_tokenizer.encode(end_sym)[-1]

        # set prompts
        self.en_prompt_list, self.zh_prompt_list = [], []
        if raw_prompts.get('en') is not None:
            en_filted_prompts = [
                raw_prompt for raw_prompt in raw_prompts['en']
                if '<ImageHere>' in raw_prompt
            ]
            self.en_prompt_list = [
                prompt_template['en'].format(p) for p in en_filted_prompts
            ]
        if raw_prompts.get('zh') is not None:
            zh_filted_prompts = [
                raw_prompt for raw_prompt in raw_prompts['zh']
                if '<ImageHere>' in raw_prompt
            ]
            self.zh_prompt_list = [
                prompt_template['zh'].format(p) for p in zh_filted_prompts
            ]

        # update generation configs
        self.generation_cfg = dict(
            max_new_tokens=300,
            num_beams=1,
            do_sample=True,
            min_length=1,
            top_p=0.9,
            repetition_penalty=1.1,
            length_penalty=1.0,
            temperature=1.0)
        self.generation_cfg.update(**generation_cfg)

        if hasattr(self, 'register_load_state_dict_post_hook'):
            self.register_load_state_dict_post_hook(self._load_llama_proj_hook)

    def half(self):
        self.llama_model = self.llama_model.half()
        return self

    def encode_img(self,
                   images: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """The function to encode the images."""
        device = images.device
        x = self.vision_encoder(images)[0]
        image_embeds = self.ln_vision(x).to(device)
        image_atts = torch.ones(
            image_embeds.size()[:-1], dtype=torch.long).to(device)

        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
        query_output = self.q_former.bert(
            query_embeds=query_tokens,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_atts,
            return_dict=True,
        )

        inputs_llama = self.llama_proj(query_output.last_hidden_state)
        atts_llama = torch.ones(
            inputs_llama.size()[:-1], dtype=torch.long).to(images.device)
        return inputs_llama, atts_llama

    def prompt_wrap(self, img_embeds: torch.Tensor, atts_img: torch.Tensor,
                    prompt: List[str]) -> Tuple[torch.Tensor, torch.Tensor]:
        """The function to wrap the image and prompt.

        Make sure that len(prompt) == img_embeds.shape[0].

        Args:
            img_embeds (torch.Tensor): The embedding of the input images.
            atts_img (torch.Tensor): Attention map of the image embeddings.
            prompt (List[str]): The prompt of the batch data.

        Returns:
            Tuple[torch.Tensor, torch.Tensor]: The embedding and attention map.
        """
        if len(prompt) > 0:
            p_before_list, p_after_list = [], []
            for pro in prompt:
                p_before, p_after = pro.split('<ImageHere>')
                p_before_list.append(p_before)
                p_after_list.append(p_after)
            p_before_tokens = self.llama_tokenizer(
                p_before_list,
                return_tensors='pt',
                padding='longest',
                add_special_tokens=False).to(img_embeds.device)
            p_after_tokens = self.llama_tokenizer(
                p_after_list,
                return_tensors='pt',
                padding='longest',
                add_special_tokens=False).to(img_embeds.device)
            p_before_embeds = self.llama_model.model.embed_tokens(
                p_before_tokens.input_ids)
            p_after_embeds = self.llama_model.model.embed_tokens(
                p_after_tokens.input_ids)
            wrapped_img_embeds = torch.cat(
                [p_before_embeds, img_embeds, p_after_embeds], dim=1)
            wrapped_atts_img = atts_img[:, :1].expand(
                -1, wrapped_img_embeds.shape[1])
            return wrapped_img_embeds, wrapped_atts_img
        else:
            return img_embeds, atts_img

    def loss(self,
             images: torch.Tensor,
             data_samples: Optional[List[DataSample]] = None) -> dict:
        """The forward function in training.

        Args:
            inputs (List[torch.Tensor]): The input images.
            data_samples (List[DataSample]): All elements required
                during the forward function.

        Returns:
            Dict[str, torch.Tensor]: A dictionary of loss components.
        """
        img_embeds, atts_img = self.encode_img(images)

        self.llama_tokenizer.padding_side = 'right'

        prompts, texts = [], []
        for t in data_samples:
            chat_content = t.chat_content
            split_mark = '###Answer: ' if t.lang == 'en' else '###答:'
            prompt, text = chat_content.split(split_mark)
            prompt += split_mark
            text += self.end_sym
            prompts.append(prompt)
            texts.append(text)

        img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompts)

        to_regress_tokens = self.llama_tokenizer(
            texts,
            return_tensors='pt',
            padding='longest',
            truncation=True,
            max_length=self.max_txt_len,
            add_special_tokens=False).to(images.device)

        targets = to_regress_tokens.input_ids.masked_fill(
            to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id,
            -100)

        empty_targets = (
            torch.ones([atts_img.shape[0], atts_img.shape[1] + 1],
                       dtype=torch.long).to(images.device).fill_(
                           -100)  # plus one for bos
        )
        targets = torch.cat([empty_targets, targets], dim=1)

        batch_size = img_embeds.shape[0]
        bos = torch.ones([batch_size, 1],
                         dtype=to_regress_tokens.input_ids.dtype,
                         device=to_regress_tokens.input_ids.device
                         ) * self.llama_tokenizer.bos_token_id
        bos_embeds = self.llama_model.model.embed_tokens(bos)
        atts_bos = atts_img[:, :1]

        to_regress_embeds = self.llama_model.model.embed_tokens(
            to_regress_tokens.input_ids)
        inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds],
                                  dim=1)
        attention_mask = torch.cat(
            [atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1)

        outputs = self.llama_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            return_dict=True,
            labels=targets,
        )
        loss = outputs.loss
        return dict(loss=loss)

    def predict(
            self,
            images: torch.Tensor,
            data_samples: Optional[List[DataSample]] = None
    ) -> List[DataSample]:

        with torch.no_grad():
            img_embeds, atts_img = self.encode_img(images)

        prompts = [
            random.choice(self.zh_prompt_list) if hasattr(t, 'lang')
            and t.lang == 'zh' else random.choice(self.en_prompt_list)
            for t in data_samples
        ]
        img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompts)

        batch_size = img_embeds.shape[0]
        bos = torch.ones(
            [batch_size, 1], dtype=torch.long,
            device=img_embeds.device) * self.llama_tokenizer.bos_token_id
        bos_embeds = self.llama_model.model.embed_tokens(bos)
        inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1)

        outputs = self.llama_model.generate(
            inputs_embeds=inputs_embeds,
            eos_token_id=self.end_token_id,
            **self.generation_cfg)

        return self.post_process(outputs, data_samples)

    def post_process(
            self, outputs: torch.Tensor,
            data_samples: Optional[List[DataSample]]) -> List[DataSample]:
        """Perform post process for outputs for different task.

        Args:
            outputs (torch.Tensor): The generated outputs.
            data_samples (List[DataSample], optional): The annotation
                data of every samples.

        Returns:
            List[DataSample]: Return list of data samples.
        """
        outputs = self.llama_tokenizer.batch_decode(
            outputs, skip_special_tokens=True)

        if data_samples is None:
            data_samples = [DataSample() for _ in range(len(outputs))]

        for output, data_sample in zip(outputs, data_samples):
            if self.task == 'caption':
                output = output.split('###')[0]
                data_sample.pred_caption = output
            else:
                # raw output
                data_sample.pred_output = output
        return data_samples

    def forward(
        self,
        images: torch.Tensor,
        data_samples: Optional[list] = None,
        mode: str = 'predict',
        **kwargs,
    ):
        """The unified entry for a forward process in both training and test.
        The method accepts the following modes:

        - "predict": Forward and return a list of data samples contain the
          predict results.

        Args:
            images (torch.Tensor): the preprocessed image tensor of shape
                ``(N, C, H, W)``.
            data_samples (List[DataSample], optional): The annotation data
                of every samples. Defaults to None.
            mode (str): Return what kind of value. Defaults to 'predict'.
        """
        if mode == 'loss':
            return self.loss(images, data_samples)
        elif mode == 'predict':
            return self.predict(images, data_samples, **kwargs)
        else:
            raise RuntimeError(f'Invalid mode "{mode}".')

    @staticmethod
    def _load_llama_proj_hook(module, incompatible_keys):
        """Avoid warning missing keys except LLaMA projection keys."""
        proj_patterns = [
            'vision_encoder.*',
            'ln_vision.*',
            'q_former.*',
            'query_tokens',
            'llama_model.*',
        ]
        for key in list(incompatible_keys.missing_keys):
            if any(re.match(pattern, key) for pattern in proj_patterns):
                incompatible_keys.missing_keys.remove(key)