TTP / mmpretrain /models /multimodal /blip /blip_grounding.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from mmengine.model import BaseModel
from mmpretrain.models.utils.box_utils import box_xyxy_to_cxcywh
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures.data_sample import DataSample
@MODELS.register_module()
class BlipGrounding(BaseModel):
"""BLIP Grounding.
Args:
visual_encoder (dict): Backbone for extracting image features.
text_encoder (dict): Backbone for extracting text features.
but we integrate the vqa text extractor
into the tokenizer part in datasets/transform/
so we don't need text_backbone
multimodal_encoder (Optional[dict]): Backbone for extracting
multi-modal features. We apply this part as VQA fusion module.
neck (Optional[dict]): The neck module to process features from
backbone. Defaults to None.
head (Optional[Union[List[dict], dict]]): The head module to calculate
loss from processed features. See :mod:`mmpretrain.models.heads`.
Notice that if the head is not set, `loss` method cannot be used.
Defaults to None.
data_preprocessor (Optional[dict]): The config for preprocessing input
data. If None or no specified type, it will use
"MutimodalDataPreprocessor" as type.
See :class:`MutimodalDataPreprocessor` for more details.
Defaults to None.
init_cfg (Optional[dict]): the config to control the initialization.
Defaults to None.
"""
def __init__(self,
tokenizer: Optional[dict] = None,
visual_encoder: Optional[dict] = None,
text_encoder: Optional[dict] = None,
multimodal_encoder: Optional[dict] = None,
head: Optional[Union[List[dict], dict]] = None,
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[dict] = None) -> None:
if data_preprocessor is None:
data_preprocessor = {}
if isinstance(data_preprocessor, dict):
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
data_preprocessor = MODELS.build(data_preprocessor)
super(BlipGrounding, self).__init__(
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
self.tokenizer = TOKENIZER.build(tokenizer)
self.prompt = 'localize instance: '
self.visual_encoder = MODELS.build(visual_encoder)
self.text_encoder = MODELS.build(text_encoder)
self.multimodal_encoder = MODELS.build(multimodal_encoder)
head.setdefault('tokenizer', self.tokenizer)
self.grounding_head = MODELS.build(head)
def forward(
self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None,
mode: str = 'loss',
):
"""The unified entry for a forward process in both training and test.
The method should accept only one mode "loss":
- "loss": Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (torch.Tensor, tuple): The input tensor with shape
(N, C, ...) in general.
data_samples (List[VQADataSample], optional): The annotation
data of every samples. It's required if ``mode="loss"``.
Defaults to None.
mode (str): Return what kind of value. Defaults to 'loss'.
Returns:
The return type depends on ``mode``.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'loss':
return self.loss(images, data_samples)
elif mode == 'predict':
return self.predict(images, data_samples)
else:
raise RuntimeError(f'Invalid mode "{mode}".')
def extract_feat(self, images: torch.Tensor) -> torch.Tensor:
"""Extract features from the input tensor with shape (N, C, ...).
Args:
inputs (Tensor): A batch of inputs. The shape of it should be
``(num_samples, num_channels, *img_shape)``.
Returns:
image_embeds (Tensor): The output features.
"""
image_embeds = self.visual_encoder(images)[0]
return image_embeds
def loss(
self,
images: torch.Tensor,
data_samples=None,
) -> Union[torch.Tensor, Tuple[torch.Tensor]]:
"""generate train_loss from the input tensor and data_samples.
Args:
inputs (Tensor): A batch of inputs. The shape of it should be
``(num_samples, num_channels, *img_shape)``.
data_samples (List[VQADataSample], optional): The annotation
data of every samples..
Returns:
Dict[torch.Tensor]: The losses features.
"""
# extract image feature
image_embeds = self.extract_feat(images)
image_atts = image_embeds.new_ones(
image_embeds.size()[:-1], dtype=torch.long)
raw_text = []
box_targets = []
for ds in data_samples:
raw_text.append(ds.text)
box_t = copy.deepcopy(ds.box) * 1.0
box_t[1] /= ds.img_shape[0]
box_t[3] /= ds.img_shape[0]
box_t[0] /= ds.img_shape[1]
box_t[2] /= ds.img_shape[1]
box_targets.append(box_t)
box_targets = image_embeds.new_tensor(np.stack(box_targets))
box_targets = box_xyxy_to_cxcywh(box_targets) # xywh 0-1
text = self.tokenizer(
raw_text,
padding='longest',
truncation=True,
max_length=128,
return_tensors='pt',
).to(image_embeds.device)
text_embeds = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
mode='text',
return_dict=True) # bz, seq_len, hid
# multimodal fusion
multimodal_embeds = self.multimodal_encoder(
encoder_embeds=text_embeds.last_hidden_state,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
# put answer from data_samples into tensor form
losses = self.grounding_head.loss(
text_embedding=multimodal_embeds.last_hidden_state,
text_embedding_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
decoder_targets=box_targets,
)
return losses
def predict(self, images, data_samples=None):
""""""
# extract image feature
image_embeds = self.extract_feat(images)
image_atts = image_embeds.new_ones(
image_embeds.size()[:-1], dtype=torch.long)
raw_text = []
for ds in data_samples:
raw_text.append(ds.text)
text = self.tokenizer(
raw_text,
padding='longest',
truncation=True,
max_length=128,
return_tensors='pt',
).to(image_embeds.device)
text_embeds = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
mode='text',
return_dict=True) # bz, seq_len, hid
# multimodal fusion
multimodal_embeds = self.multimodal_encoder(
encoder_embeds=text_embeds.last_hidden_state,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
# put answer from data_samples into tensor form
output_boxes = self.grounding_head.predict(
text_embedding=multimodal_embeds.last_hidden_state,
text_embedding_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
) # xyxy 0-1
out_data_samples = []
for bbox, data_sample, img in zip(output_boxes, data_samples, images):
if data_sample is None:
data_sample = DataSample()
img_size = img.shape[-2:]
scale_factor = data_sample.get('scale_factor', (1, 1))
bbox[0::2] = bbox[0::2] * img_size[1] / scale_factor[0]
bbox[1::2] = bbox[1::2] * img_size[0] / scale_factor[1]
bbox = bbox[None, :]
data_sample.pred_bboxes = bbox
if 'gt_bboxes' in data_sample:
gt_bboxes = torch.Tensor(data_sample.get('gt_bboxes'))
gt_bboxes[:, 0::2] /= scale_factor[0]
gt_bboxes[:, 1::2] /= scale_factor[1]
data_sample.gt_bboxes = gt_bboxes
out_data_samples.append(data_sample)
return out_data_samples