Spaces:
Runtime error
Runtime error
File size: 9,274 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from mmengine.model import BaseModel
from mmpretrain.models.utils.box_utils import box_xyxy_to_cxcywh
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures.data_sample import DataSample
@MODELS.register_module()
class BlipGrounding(BaseModel):
"""BLIP Grounding.
Args:
visual_encoder (dict): Backbone for extracting image features.
text_encoder (dict): Backbone for extracting text features.
but we integrate the vqa text extractor
into the tokenizer part in datasets/transform/
so we don't need text_backbone
multimodal_encoder (Optional[dict]): Backbone for extracting
multi-modal features. We apply this part as VQA fusion module.
neck (Optional[dict]): The neck module to process features from
backbone. Defaults to None.
head (Optional[Union[List[dict], dict]]): The head module to calculate
loss from processed features. See :mod:`mmpretrain.models.heads`.
Notice that if the head is not set, `loss` method cannot be used.
Defaults to None.
data_preprocessor (Optional[dict]): The config for preprocessing input
data. If None or no specified type, it will use
"MutimodalDataPreprocessor" as type.
See :class:`MutimodalDataPreprocessor` for more details.
Defaults to None.
init_cfg (Optional[dict]): the config to control the initialization.
Defaults to None.
"""
def __init__(self,
tokenizer: Optional[dict] = None,
visual_encoder: Optional[dict] = None,
text_encoder: Optional[dict] = None,
multimodal_encoder: Optional[dict] = None,
head: Optional[Union[List[dict], dict]] = None,
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[dict] = None) -> None:
if data_preprocessor is None:
data_preprocessor = {}
if isinstance(data_preprocessor, dict):
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
data_preprocessor = MODELS.build(data_preprocessor)
super(BlipGrounding, self).__init__(
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
self.tokenizer = TOKENIZER.build(tokenizer)
self.prompt = 'localize instance: '
self.visual_encoder = MODELS.build(visual_encoder)
self.text_encoder = MODELS.build(text_encoder)
self.multimodal_encoder = MODELS.build(multimodal_encoder)
head.setdefault('tokenizer', self.tokenizer)
self.grounding_head = MODELS.build(head)
def forward(
self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None,
mode: str = 'loss',
):
"""The unified entry for a forward process in both training and test.
The method should accept only one mode "loss":
- "loss": Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (torch.Tensor, tuple): The input tensor with shape
(N, C, ...) in general.
data_samples (List[VQADataSample], optional): The annotation
data of every samples. It's required if ``mode="loss"``.
Defaults to None.
mode (str): Return what kind of value. Defaults to 'loss'.
Returns:
The return type depends on ``mode``.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'loss':
return self.loss(images, data_samples)
elif mode == 'predict':
return self.predict(images, data_samples)
else:
raise RuntimeError(f'Invalid mode "{mode}".')
def extract_feat(self, images: torch.Tensor) -> torch.Tensor:
"""Extract features from the input tensor with shape (N, C, ...).
Args:
inputs (Tensor): A batch of inputs. The shape of it should be
``(num_samples, num_channels, *img_shape)``.
Returns:
image_embeds (Tensor): The output features.
"""
image_embeds = self.visual_encoder(images)[0]
return image_embeds
def loss(
self,
images: torch.Tensor,
data_samples=None,
) -> Union[torch.Tensor, Tuple[torch.Tensor]]:
"""generate train_loss from the input tensor and data_samples.
Args:
inputs (Tensor): A batch of inputs. The shape of it should be
``(num_samples, num_channels, *img_shape)``.
data_samples (List[VQADataSample], optional): The annotation
data of every samples..
Returns:
Dict[torch.Tensor]: The losses features.
"""
# extract image feature
image_embeds = self.extract_feat(images)
image_atts = image_embeds.new_ones(
image_embeds.size()[:-1], dtype=torch.long)
raw_text = []
box_targets = []
for ds in data_samples:
raw_text.append(ds.text)
box_t = copy.deepcopy(ds.box) * 1.0
box_t[1] /= ds.img_shape[0]
box_t[3] /= ds.img_shape[0]
box_t[0] /= ds.img_shape[1]
box_t[2] /= ds.img_shape[1]
box_targets.append(box_t)
box_targets = image_embeds.new_tensor(np.stack(box_targets))
box_targets = box_xyxy_to_cxcywh(box_targets) # xywh 0-1
text = self.tokenizer(
raw_text,
padding='longest',
truncation=True,
max_length=128,
return_tensors='pt',
).to(image_embeds.device)
text_embeds = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
mode='text',
return_dict=True) # bz, seq_len, hid
# multimodal fusion
multimodal_embeds = self.multimodal_encoder(
encoder_embeds=text_embeds.last_hidden_state,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
# put answer from data_samples into tensor form
losses = self.grounding_head.loss(
text_embedding=multimodal_embeds.last_hidden_state,
text_embedding_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
decoder_targets=box_targets,
)
return losses
def predict(self, images, data_samples=None):
""""""
# extract image feature
image_embeds = self.extract_feat(images)
image_atts = image_embeds.new_ones(
image_embeds.size()[:-1], dtype=torch.long)
raw_text = []
for ds in data_samples:
raw_text.append(ds.text)
text = self.tokenizer(
raw_text,
padding='longest',
truncation=True,
max_length=128,
return_tensors='pt',
).to(image_embeds.device)
text_embeds = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
mode='text',
return_dict=True) # bz, seq_len, hid
# multimodal fusion
multimodal_embeds = self.multimodal_encoder(
encoder_embeds=text_embeds.last_hidden_state,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
# put answer from data_samples into tensor form
output_boxes = self.grounding_head.predict(
text_embedding=multimodal_embeds.last_hidden_state,
text_embedding_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
) # xyxy 0-1
out_data_samples = []
for bbox, data_sample, img in zip(output_boxes, data_samples, images):
if data_sample is None:
data_sample = DataSample()
img_size = img.shape[-2:]
scale_factor = data_sample.get('scale_factor', (1, 1))
bbox[0::2] = bbox[0::2] * img_size[1] / scale_factor[0]
bbox[1::2] = bbox[1::2] * img_size[0] / scale_factor[1]
bbox = bbox[None, :]
data_sample.pred_bboxes = bbox
if 'gt_bboxes' in data_sample:
gt_bboxes = torch.Tensor(data_sample.get('gt_bboxes'))
gt_bboxes[:, 0::2] /= scale_factor[0]
gt_bboxes[:, 1::2] /= scale_factor[1]
data_sample.gt_bboxes = gt_bboxes
out_data_samples.append(data_sample)
return out_data_samples
|