Spaces:
Runtime error
Runtime error
# Copyright (c) Github URL | |
# Copied from | |
# https://github.com/youtubevos/cocoapi/blob/master/PythonAPI/pycocotools/ytvos.py | |
__author__ = 'ychfan' | |
# Interface for accessing the YouTubeVIS dataset. | |
# The following API functions are defined: | |
# YTVIS - YTVIS api class that loads YouTubeVIS annotation file | |
# and prepare data structures. | |
# decodeMask - Decode binary mask M encoded via run-length encoding. | |
# encodeMask - Encode binary mask M using run-length encoding. | |
# getAnnIds - Get ann ids that satisfy given filter conditions. | |
# getCatIds - Get cat ids that satisfy given filter conditions. | |
# getImgIds - Get img ids that satisfy given filter conditions. | |
# loadAnns - Load anns with the specified ids. | |
# loadCats - Load cats with the specified ids. | |
# loadImgs - Load imgs with the specified ids. | |
# annToMask - Convert segmentation in an annotation to binary mask. | |
# loadRes - Load algorithm results and create API for accessing them. | |
# Microsoft COCO Toolbox. version 2.0 | |
# Data, paper, and tutorials available at: http://mscoco.org/ | |
# Code written by Piotr Dollar and Tsung-Yi Lin, 2014. | |
# Licensed under the Simplified BSD License [see bsd.txt] | |
import copy | |
import itertools | |
import json | |
import sys | |
import time | |
from collections import defaultdict | |
import numpy as np | |
from pycocotools import mask as maskUtils | |
PYTHON_VERSION = sys.version_info[0] | |
def _isArrayLike(obj): | |
return hasattr(obj, '__iter__') and hasattr(obj, '__len__') | |
class YTVIS: | |
def __init__(self, annotation_file=None): | |
"""Constructor of Microsoft COCO helper class for reading and | |
visualizing annotations. | |
:param annotation_file (str | dict): location of annotation file or | |
dict results. | |
:param image_folder (str): location to the folder that hosts images. | |
:return: | |
""" | |
# load dataset | |
self.dataset, self.anns, self.cats, self.vids = dict(), dict(), dict( | |
), dict() | |
self.vidToAnns, self.catToVids = defaultdict(list), defaultdict(list) | |
if annotation_file is not None: | |
print('loading annotations into memory...') | |
tic = time.time() | |
if type(annotation_file) == str: | |
dataset = json.load(open(annotation_file, 'r')) | |
else: | |
dataset = annotation_file | |
assert type( | |
dataset | |
) == dict, 'annotation file format {} not supported'.format( | |
type(dataset)) | |
print('Done (t={:0.2f}s)'.format(time.time() - tic)) | |
self.dataset = dataset | |
self.createIndex() | |
def createIndex(self): | |
# create index | |
print('creating index...') | |
anns, cats, vids = {}, {}, {} | |
vidToAnns, catToVids = defaultdict(list), defaultdict(list) | |
if 'annotations' in self.dataset: | |
for ann in self.dataset['annotations']: | |
vidToAnns[ann['video_id']].append(ann) | |
anns[ann['id']] = ann | |
if 'videos' in self.dataset: | |
for vid in self.dataset['videos']: | |
vids[vid['id']] = vid | |
if 'categories' in self.dataset: | |
for cat in self.dataset['categories']: | |
cats[cat['id']] = cat | |
if 'annotations' in self.dataset and 'categories' in self.dataset: | |
for ann in self.dataset['annotations']: | |
catToVids[ann['category_id']].append(ann['video_id']) | |
print('index created!') | |
# create class members | |
self.anns = anns | |
self.vidToAnns = vidToAnns | |
self.catToVids = catToVids | |
self.vids = vids | |
self.cats = cats | |
def getAnnIds(self, vidIds=[], catIds=[], areaRng=[], iscrowd=None): | |
"""Get ann ids that satisfy given filter conditions. default skips that | |
filter. | |
:param vidIds (int array) : get anns for given vids | |
catIds (int array) : get anns for given cats | |
areaRng (float array) : get anns for given area range | |
iscrowd (boolean) : get anns for given crowd label | |
:return: ids (int array) : integer array of ann ids | |
""" | |
vidIds = vidIds if _isArrayLike(vidIds) else [vidIds] | |
catIds = catIds if _isArrayLike(catIds) else [catIds] | |
if len(vidIds) == len(catIds) == len(areaRng) == 0: | |
anns = self.dataset['annotations'] | |
else: | |
if not len(vidIds) == 0: | |
lists = [ | |
self.vidToAnns[vidId] for vidId in vidIds | |
if vidId in self.vidToAnns | |
] | |
anns = list(itertools.chain.from_iterable(lists)) | |
else: | |
anns = self.dataset['annotations'] | |
anns = anns if len(catIds) == 0 else [ | |
ann for ann in anns if ann['category_id'] in catIds | |
] | |
anns = anns if len(areaRng) == 0 else [ | |
ann for ann in anns if ann['avg_area'] > areaRng[0] | |
and ann['avg_area'] < areaRng[1] | |
] | |
if iscrowd is not None: | |
ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] | |
else: | |
ids = [ann['id'] for ann in anns] | |
return ids | |
def getCatIds(self, catNms=[], supNms=[], catIds=[]): | |
"""filtering parameters. default skips that filter. | |
:param catNms (str array) : get cats for given cat names | |
:param supNms (str array) : get cats for given supercategory names | |
:param catIds (int array) : get cats for given cat ids | |
:return: ids (int array) : integer array of cat ids | |
""" | |
catNms = catNms if _isArrayLike(catNms) else [catNms] | |
supNms = supNms if _isArrayLike(supNms) else [supNms] | |
catIds = catIds if _isArrayLike(catIds) else [catIds] | |
if len(catNms) == len(supNms) == len(catIds) == 0: | |
cats = self.dataset['categories'] | |
else: | |
cats = self.dataset['categories'] | |
cats = cats if len(catNms) == 0 else [ | |
cat for cat in cats if cat['name'] in catNms | |
] | |
cats = cats if len(supNms) == 0 else [ | |
cat for cat in cats if cat['supercategory'] in supNms | |
] | |
cats = cats if len(catIds) == 0 else [ | |
cat for cat in cats if cat['id'] in catIds | |
] | |
ids = [cat['id'] for cat in cats] | |
return ids | |
def getVidIds(self, vidIds=[], catIds=[]): | |
"""Get vid ids that satisfy given filter conditions. | |
:param vidIds (int array) : get vids for given ids | |
:param catIds (int array) : get vids with all given cats | |
:return: ids (int array) : integer array of vid ids | |
""" | |
vidIds = vidIds if _isArrayLike(vidIds) else [vidIds] | |
catIds = catIds if _isArrayLike(catIds) else [catIds] | |
if len(vidIds) == len(catIds) == 0: | |
ids = self.vids.keys() | |
else: | |
ids = set(vidIds) | |
for i, catId in enumerate(catIds): | |
if i == 0 and len(ids) == 0: | |
ids = set(self.catToVids[catId]) | |
else: | |
ids &= set(self.catToVids[catId]) | |
return list(ids) | |
def loadAnns(self, ids=[]): | |
"""Load anns with the specified ids. | |
:param ids (int array) : integer ids specifying anns | |
:return: anns (object array) : loaded ann objects | |
""" | |
if _isArrayLike(ids): | |
return [self.anns[id] for id in ids] | |
elif type(ids) == int: | |
return [self.anns[ids]] | |
def loadCats(self, ids=[]): | |
"""Load cats with the specified ids. | |
:param ids (int array) : integer ids specifying cats | |
:return: cats (object array) : loaded cat objects | |
""" | |
if _isArrayLike(ids): | |
return [self.cats[id] for id in ids] | |
elif type(ids) == int: | |
return [self.cats[ids]] | |
def loadVids(self, ids=[]): | |
"""Load anns with the specified ids. | |
:param ids (int array) : integer ids specifying vid | |
:return: vids (object array) : loaded vid objects | |
""" | |
if _isArrayLike(ids): | |
return [self.vids[id] for id in ids] | |
elif type(ids) == int: | |
return [self.vids[ids]] | |
def loadRes(self, resFile): | |
"""Load result file and return a result api object. | |
:param resFile (str) : file name of result file | |
:return: res (obj) : result api object | |
""" | |
res = YTVIS() | |
res.dataset['videos'] = [img for img in self.dataset['videos']] | |
print('Loading and preparing results...') | |
tic = time.time() | |
if type(resFile) == str or (PYTHON_VERSION == 2 | |
and type(resFile) == str): | |
anns = json.load(open(resFile)) | |
elif type(resFile) == np.ndarray: | |
anns = self.loadNumpyAnnotations(resFile) | |
else: | |
anns = resFile | |
assert type(anns) == list, 'results in not an array of objects' | |
annsVidIds = [ann['video_id'] for ann in anns] | |
assert set(annsVidIds) == (set(annsVidIds) & set(self.getVidIds())), \ | |
'Results do not correspond to current coco set' | |
if 'segmentations' in anns[0]: | |
res.dataset['categories'] = copy.deepcopy( | |
self.dataset['categories']) | |
for id, ann in enumerate(anns): | |
ann['areas'] = [] | |
if 'bboxes' not in ann: | |
ann['bboxes'] = [] | |
for seg in ann['segmentations']: | |
# now only support compressed RLE format | |
# as segmentation results | |
if seg: | |
ann['areas'].append(maskUtils.area(seg)) | |
if len(ann['bboxes']) < len(ann['areas']): | |
ann['bboxes'].append(maskUtils.toBbox(seg)) | |
else: | |
ann['areas'].append(None) | |
if len(ann['bboxes']) < len(ann['areas']): | |
ann['bboxes'].append(None) | |
ann['id'] = id + 1 | |
l_ori = [a for a in ann['areas'] if a] | |
if len(l_ori) == 0: | |
ann['avg_area'] = 0 | |
else: | |
ann['avg_area'] = np.array(l_ori).mean() | |
ann['iscrowd'] = 0 | |
print('DONE (t={:0.2f}s)'.format(time.time() - tic)) | |
res.dataset['annotations'] = anns | |
res.createIndex() | |
return res | |
def annToRLE(self, ann, frameId): | |
"""Convert annotation which can be polygons, uncompressed RLE to RLE. | |
:return: binary mask (numpy 2D array) | |
""" | |
t = self.vids[ann['video_id']] | |
h, w = t['height'], t['width'] | |
segm = ann['segmentations'][frameId] | |
if type(segm) == list: | |
# polygon -- a single object might consist of multiple parts | |
# we merge all parts into one mask rle code | |
rles = maskUtils.frPyObjects(segm, h, w) | |
rle = maskUtils.merge(rles) | |
elif type(segm['counts']) == list: | |
# uncompressed RLE | |
rle = maskUtils.frPyObjects(segm, h, w) | |
else: | |
# rle | |
rle = segm | |
return rle | |
def annToMask(self, ann, frameId): | |
"""Convert annotation which can be polygons, uncompressed RLE, or RLE | |
to binary mask. | |
:return: binary mask (numpy 2D array) | |
""" | |
rle = self.annToRLE(ann, frameId) | |
m = maskUtils.decode(rle) | |
return m | |