Spaces:
Runtime error
Runtime error
File size: 11,672 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# Copyright (c) Github URL
# Copied from
# https://github.com/youtubevos/cocoapi/blob/master/PythonAPI/pycocotools/ytvos.py
__author__ = 'ychfan'
# Interface for accessing the YouTubeVIS dataset.
# The following API functions are defined:
# YTVIS - YTVIS api class that loads YouTubeVIS annotation file
# and prepare data structures.
# decodeMask - Decode binary mask M encoded via run-length encoding.
# encodeMask - Encode binary mask M using run-length encoding.
# getAnnIds - Get ann ids that satisfy given filter conditions.
# getCatIds - Get cat ids that satisfy given filter conditions.
# getImgIds - Get img ids that satisfy given filter conditions.
# loadAnns - Load anns with the specified ids.
# loadCats - Load cats with the specified ids.
# loadImgs - Load imgs with the specified ids.
# annToMask - Convert segmentation in an annotation to binary mask.
# loadRes - Load algorithm results and create API for accessing them.
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2014.
# Licensed under the Simplified BSD License [see bsd.txt]
import copy
import itertools
import json
import sys
import time
from collections import defaultdict
import numpy as np
from pycocotools import mask as maskUtils
PYTHON_VERSION = sys.version_info[0]
def _isArrayLike(obj):
return hasattr(obj, '__iter__') and hasattr(obj, '__len__')
class YTVIS:
def __init__(self, annotation_file=None):
"""Constructor of Microsoft COCO helper class for reading and
visualizing annotations.
:param annotation_file (str | dict): location of annotation file or
dict results.
:param image_folder (str): location to the folder that hosts images.
:return:
"""
# load dataset
self.dataset, self.anns, self.cats, self.vids = dict(), dict(), dict(
), dict()
self.vidToAnns, self.catToVids = defaultdict(list), defaultdict(list)
if annotation_file is not None:
print('loading annotations into memory...')
tic = time.time()
if type(annotation_file) == str:
dataset = json.load(open(annotation_file, 'r'))
else:
dataset = annotation_file
assert type(
dataset
) == dict, 'annotation file format {} not supported'.format(
type(dataset))
print('Done (t={:0.2f}s)'.format(time.time() - tic))
self.dataset = dataset
self.createIndex()
def createIndex(self):
# create index
print('creating index...')
anns, cats, vids = {}, {}, {}
vidToAnns, catToVids = defaultdict(list), defaultdict(list)
if 'annotations' in self.dataset:
for ann in self.dataset['annotations']:
vidToAnns[ann['video_id']].append(ann)
anns[ann['id']] = ann
if 'videos' in self.dataset:
for vid in self.dataset['videos']:
vids[vid['id']] = vid
if 'categories' in self.dataset:
for cat in self.dataset['categories']:
cats[cat['id']] = cat
if 'annotations' in self.dataset and 'categories' in self.dataset:
for ann in self.dataset['annotations']:
catToVids[ann['category_id']].append(ann['video_id'])
print('index created!')
# create class members
self.anns = anns
self.vidToAnns = vidToAnns
self.catToVids = catToVids
self.vids = vids
self.cats = cats
def getAnnIds(self, vidIds=[], catIds=[], areaRng=[], iscrowd=None):
"""Get ann ids that satisfy given filter conditions. default skips that
filter.
:param vidIds (int array) : get anns for given vids
catIds (int array) : get anns for given cats
areaRng (float array) : get anns for given area range
iscrowd (boolean) : get anns for given crowd label
:return: ids (int array) : integer array of ann ids
"""
vidIds = vidIds if _isArrayLike(vidIds) else [vidIds]
catIds = catIds if _isArrayLike(catIds) else [catIds]
if len(vidIds) == len(catIds) == len(areaRng) == 0:
anns = self.dataset['annotations']
else:
if not len(vidIds) == 0:
lists = [
self.vidToAnns[vidId] for vidId in vidIds
if vidId in self.vidToAnns
]
anns = list(itertools.chain.from_iterable(lists))
else:
anns = self.dataset['annotations']
anns = anns if len(catIds) == 0 else [
ann for ann in anns if ann['category_id'] in catIds
]
anns = anns if len(areaRng) == 0 else [
ann for ann in anns if ann['avg_area'] > areaRng[0]
and ann['avg_area'] < areaRng[1]
]
if iscrowd is not None:
ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd]
else:
ids = [ann['id'] for ann in anns]
return ids
def getCatIds(self, catNms=[], supNms=[], catIds=[]):
"""filtering parameters. default skips that filter.
:param catNms (str array) : get cats for given cat names
:param supNms (str array) : get cats for given supercategory names
:param catIds (int array) : get cats for given cat ids
:return: ids (int array) : integer array of cat ids
"""
catNms = catNms if _isArrayLike(catNms) else [catNms]
supNms = supNms if _isArrayLike(supNms) else [supNms]
catIds = catIds if _isArrayLike(catIds) else [catIds]
if len(catNms) == len(supNms) == len(catIds) == 0:
cats = self.dataset['categories']
else:
cats = self.dataset['categories']
cats = cats if len(catNms) == 0 else [
cat for cat in cats if cat['name'] in catNms
]
cats = cats if len(supNms) == 0 else [
cat for cat in cats if cat['supercategory'] in supNms
]
cats = cats if len(catIds) == 0 else [
cat for cat in cats if cat['id'] in catIds
]
ids = [cat['id'] for cat in cats]
return ids
def getVidIds(self, vidIds=[], catIds=[]):
"""Get vid ids that satisfy given filter conditions.
:param vidIds (int array) : get vids for given ids
:param catIds (int array) : get vids with all given cats
:return: ids (int array) : integer array of vid ids
"""
vidIds = vidIds if _isArrayLike(vidIds) else [vidIds]
catIds = catIds if _isArrayLike(catIds) else [catIds]
if len(vidIds) == len(catIds) == 0:
ids = self.vids.keys()
else:
ids = set(vidIds)
for i, catId in enumerate(catIds):
if i == 0 and len(ids) == 0:
ids = set(self.catToVids[catId])
else:
ids &= set(self.catToVids[catId])
return list(ids)
def loadAnns(self, ids=[]):
"""Load anns with the specified ids.
:param ids (int array) : integer ids specifying anns
:return: anns (object array) : loaded ann objects
"""
if _isArrayLike(ids):
return [self.anns[id] for id in ids]
elif type(ids) == int:
return [self.anns[ids]]
def loadCats(self, ids=[]):
"""Load cats with the specified ids.
:param ids (int array) : integer ids specifying cats
:return: cats (object array) : loaded cat objects
"""
if _isArrayLike(ids):
return [self.cats[id] for id in ids]
elif type(ids) == int:
return [self.cats[ids]]
def loadVids(self, ids=[]):
"""Load anns with the specified ids.
:param ids (int array) : integer ids specifying vid
:return: vids (object array) : loaded vid objects
"""
if _isArrayLike(ids):
return [self.vids[id] for id in ids]
elif type(ids) == int:
return [self.vids[ids]]
def loadRes(self, resFile):
"""Load result file and return a result api object.
:param resFile (str) : file name of result file
:return: res (obj) : result api object
"""
res = YTVIS()
res.dataset['videos'] = [img for img in self.dataset['videos']]
print('Loading and preparing results...')
tic = time.time()
if type(resFile) == str or (PYTHON_VERSION == 2
and type(resFile) == str):
anns = json.load(open(resFile))
elif type(resFile) == np.ndarray:
anns = self.loadNumpyAnnotations(resFile)
else:
anns = resFile
assert type(anns) == list, 'results in not an array of objects'
annsVidIds = [ann['video_id'] for ann in anns]
assert set(annsVidIds) == (set(annsVidIds) & set(self.getVidIds())), \
'Results do not correspond to current coco set'
if 'segmentations' in anns[0]:
res.dataset['categories'] = copy.deepcopy(
self.dataset['categories'])
for id, ann in enumerate(anns):
ann['areas'] = []
if 'bboxes' not in ann:
ann['bboxes'] = []
for seg in ann['segmentations']:
# now only support compressed RLE format
# as segmentation results
if seg:
ann['areas'].append(maskUtils.area(seg))
if len(ann['bboxes']) < len(ann['areas']):
ann['bboxes'].append(maskUtils.toBbox(seg))
else:
ann['areas'].append(None)
if len(ann['bboxes']) < len(ann['areas']):
ann['bboxes'].append(None)
ann['id'] = id + 1
l_ori = [a for a in ann['areas'] if a]
if len(l_ori) == 0:
ann['avg_area'] = 0
else:
ann['avg_area'] = np.array(l_ori).mean()
ann['iscrowd'] = 0
print('DONE (t={:0.2f}s)'.format(time.time() - tic))
res.dataset['annotations'] = anns
res.createIndex()
return res
def annToRLE(self, ann, frameId):
"""Convert annotation which can be polygons, uncompressed RLE to RLE.
:return: binary mask (numpy 2D array)
"""
t = self.vids[ann['video_id']]
h, w = t['height'], t['width']
segm = ann['segmentations'][frameId]
if type(segm) == list:
# polygon -- a single object might consist of multiple parts
# we merge all parts into one mask rle code
rles = maskUtils.frPyObjects(segm, h, w)
rle = maskUtils.merge(rles)
elif type(segm['counts']) == list:
# uncompressed RLE
rle = maskUtils.frPyObjects(segm, h, w)
else:
# rle
rle = segm
return rle
def annToMask(self, ann, frameId):
"""Convert annotation which can be polygons, uncompressed RLE, or RLE
to binary mask.
:return: binary mask (numpy 2D array)
"""
rle = self.annToRLE(ann, frameId)
m = maskUtils.decode(rle)
return m
|