TTP / mmdet /datasets /api_wrappers /cocoeval_mp.py
KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
11.9 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import itertools
import time
from collections import defaultdict
import numpy as np
import torch.multiprocessing as mp
from mmengine.logging import MMLogger
from pycocotools.cocoeval import COCOeval
from tqdm import tqdm
class COCOevalMP(COCOeval):
def _prepare(self):
'''
Prepare ._gts and ._dts for evaluation based on params
:return: None
'''
def _toMask(anns, coco):
# modify ann['segmentation'] by reference
for ann in anns:
rle = coco.annToRLE(ann)
ann['segmentation'] = rle
p = self.params
if p.useCats:
gts = []
dts = []
img_ids = set(p.imgIds)
cat_ids = set(p.catIds)
for gt in self.cocoGt.dataset['annotations']:
if (gt['category_id'] in cat_ids) and (gt['image_id']
in img_ids):
gts.append(gt)
for dt in self.cocoDt.dataset['annotations']:
if (dt['category_id'] in cat_ids) and (dt['image_id']
in img_ids):
dts.append(dt)
# gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) # noqa
# dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) # noqa
# gts=self.cocoGt.dataset['annotations']
# dts=self.cocoDt.dataset['annotations']
else:
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
# convert ground truth to mask if iouType == 'segm'
if p.iouType == 'segm':
_toMask(gts, self.cocoGt)
_toMask(dts, self.cocoDt)
# set ignore flag
for gt in gts:
gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0
gt['ignore'] = 'iscrowd' in gt and gt['iscrowd']
if p.iouType == 'keypoints':
gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore']
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
for gt in gts:
self._gts[gt['image_id'], gt['category_id']].append(gt)
for dt in dts:
self._dts[dt['image_id'], dt['category_id']].append(dt)
self.evalImgs = defaultdict(
list) # per-image per-category evaluation results
self.eval = {} # accumulated evaluation results
def evaluate(self):
"""Run per image evaluation on given images and store results (a list
of dict) in self.evalImgs.
:return: None
"""
tic = time.time()
print('Running per image evaluation...')
p = self.params
# add backward compatibility if useSegm is specified in params
if p.useSegm is not None:
p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
print('useSegm (deprecated) is not None. Running {} evaluation'.
format(p.iouType))
print('Evaluate annotation type *{}*'.format(p.iouType))
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
nproc = 8
split_size = len(catIds) // nproc
mp_params = []
for i in range(nproc):
begin = i * split_size
end = (i + 1) * split_size
if i == nproc - 1:
end = len(catIds)
mp_params.append((catIds[begin:end], ))
MMLogger.get_current_instance().info(
'start multi processing evaluation ...')
with mp.Pool(nproc) as pool:
self.evalImgs = pool.starmap(self._evaluateImg, mp_params)
self.evalImgs = list(itertools.chain(*self.evalImgs))
self._paramsEval = copy.deepcopy(self.params)
toc = time.time()
print('DONE (t={:0.2f}s).'.format(toc - tic))
def _evaluateImg(self, catids_chunk):
self._prepare()
p = self.params
maxDet = max(p.maxDets)
all_params = []
for catId in catids_chunk:
for areaRng in p.areaRng:
for imgId in p.imgIds:
all_params.append((catId, areaRng, imgId))
evalImgs = [
self.evaluateImg(imgId, catId, areaRng, maxDet)
for catId, areaRng, imgId in tqdm(all_params)
]
return evalImgs
def evaluateImg(self, imgId, catId, aRng, maxDet):
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return None
for g in gt:
if g['ignore'] or (g['area'] < aRng[0] or g['area'] > aRng[1]):
g['_ignore'] = 1
else:
g['_ignore'] = 0
# sort dt highest score first, sort gt ignore last
gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
gt = [gt[i] for i in gtind]
dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in dtind[0:maxDet]]
iscrowd = [int(o['iscrowd']) for o in gt]
# load computed ious
# ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId] # noqa
ious = self.computeIoU(imgId, catId)
ious = ious[:, gtind] if len(ious) > 0 else ious
T = len(p.iouThrs)
G = len(gt)
D = len(dt)
gtm = np.zeros((T, G))
dtm = np.zeros((T, D))
gtIg = np.array([g['_ignore'] for g in gt])
dtIg = np.zeros((T, D))
if not len(ious) == 0:
for tind, t in enumerate(p.iouThrs):
for dind, d in enumerate(dt):
# information about best match so far (m=-1 -> unmatched)
iou = min([t, 1 - 1e-10])
m = -1
for gind, g in enumerate(gt):
# if this gt already matched, and not a crowd, continue
if gtm[tind, gind] > 0 and not iscrowd[gind]:
continue
# if dt matched to reg gt, and on ignore gt, stop
if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1:
break
# continue to next gt unless better match made
if ious[dind, gind] < iou:
continue
# if match successful and best so far,
# store appropriately
iou = ious[dind, gind]
m = gind
# if match made store id of match for both dt and gt
if m == -1:
continue
dtIg[tind, dind] = gtIg[m]
dtm[tind, dind] = gt[m]['id']
gtm[tind, m] = d['id']
# set unmatched detections outside of area range to ignore
a = np.array([d['area'] < aRng[0] or d['area'] > aRng[1]
for d in dt]).reshape((1, len(dt)))
dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T,
0)))
# store results for given image and category
return {
'image_id': imgId,
'category_id': catId,
'aRng': aRng,
'maxDet': maxDet,
'dtIds': [d['id'] for d in dt],
'gtIds': [g['id'] for g in gt],
'dtMatches': dtm,
'gtMatches': gtm,
'dtScores': [d['score'] for d in dt],
'gtIgnore': gtIg,
'dtIgnore': dtIg,
}
def summarize(self):
"""Compute and display summary metrics for evaluation results.
Note this function can *only* be applied on the default parameter
setting
"""
def _summarize(ap=1, iouThr=None, areaRng='all', maxDets=100):
p = self.params
iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}' # noqa
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
typeStr = '(AP)' if ap == 1 else '(AR)'
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
if iouThr is None else '{:0.2f}'.format(iouThr)
aind = [
i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng
]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval['precision']
# IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval['recall']
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, aind, mind]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
print(
iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets,
mean_s))
return mean_s
def _summarizeDets():
stats = []
stats.append(_summarize(1, maxDets=self.params.maxDets[-1]))
stats.append(
_summarize(1, iouThr=.5, maxDets=self.params.maxDets[-1]))
stats.append(
_summarize(1, iouThr=.75, maxDets=self.params.maxDets[-1]))
for area_rng in ('small', 'medium', 'large'):
stats.append(
_summarize(
1, areaRng=area_rng, maxDets=self.params.maxDets[-1]))
for max_det in self.params.maxDets:
stats.append(_summarize(0, maxDets=max_det))
for area_rng in ('small', 'medium', 'large'):
stats.append(
_summarize(
0, areaRng=area_rng, maxDets=self.params.maxDets[-1]))
stats = np.array(stats)
return stats
def _summarizeKps():
stats = np.zeros((10, ))
stats[0] = _summarize(1, maxDets=20)
stats[1] = _summarize(1, maxDets=20, iouThr=.5)
stats[2] = _summarize(1, maxDets=20, iouThr=.75)
stats[3] = _summarize(1, maxDets=20, areaRng='medium')
stats[4] = _summarize(1, maxDets=20, areaRng='large')
stats[5] = _summarize(0, maxDets=20)
stats[6] = _summarize(0, maxDets=20, iouThr=.5)
stats[7] = _summarize(0, maxDets=20, iouThr=.75)
stats[8] = _summarize(0, maxDets=20, areaRng='medium')
stats[9] = _summarize(0, maxDets=20, areaRng='large')
return stats
if not self.eval:
raise Exception('Please run accumulate() first')
iouType = self.params.iouType
if iouType == 'segm' or iouType == 'bbox':
summarize = _summarizeDets
elif iouType == 'keypoints':
summarize = _summarizeKps
self.stats = summarize()